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Neural Network
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Optimization
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Loss functions
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Neural networks
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Loss 

(Softmax, 

Hinge)

Prediction
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What is the shape of 

this function?



Sigmoid for binary predictions
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Logitic regression

• Binary classification
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Logistic regression

• Loss function

• Cost function
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Minimization ŷi = �(xi✓)

L(⇧i, yi) = yi log⇧i + (1� yi) log(1�⇧i)

C(✓) = � 1

n

nX

i=1

yi log⇧i + (1� yi) log(1�⇧i)

One training sample



Softmax regression

• Cost function for the binary case

• Extension to multiple classes
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C(✓) = � 1

n

nX

i=1

yi log⇧i + (1� yi) log(1�⇧i)

C(✓) = � 1

n

nX

i=1

MX

c=1

yi,c log pi,c

cBinary indicator whether     is 
the label for image i

Probability given by our 
sigmoid function



Softmax formulation

• What if we have multiple classes?
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Softmax

Prof. Leal-Taixé and Prof. Niessner

⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1
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Softmax formulation

• Three neurons in the output layer for three classes
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⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1

exi✓1 + exi✓2
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Softmax formulation

• What if we have multiple classes?

• You can no longer assign         to.       as in the binary 
case, because all outputs need to sum to 1 
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C(✓) = � 1
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c=1
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Softmax formulation

• Softmax takes M inputs (Scores) and outputs M 
probabilities (M is the number of classes)
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⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1

exi✓1 + exi✓2

⇧3

p(dog|Xi)

p(cat|Xi)

p(bird|Xi)

=
escat

P
c e

sc

Score for 
class cat 
given by all 
the layers of 
the network

Normalization



Loss functions

• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)
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Evaluate the ground 

truth score for the 

image

Li =
X

k 6=yi

max(0, sk � syi + 1)

Comes from Maximum Likelihood Estimate



Loss functions

• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well enough”
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Activation functions
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Sigmoid
Forward
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x = 6
Saturated 

neurons kill the 
gradient flow
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Problem of positive output
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w1

w2

More on zero-
mean data later
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tanh
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Zero-
centered

Still saturates

Still saturates
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Rectified Linear Units (ReLU)
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Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU
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Maxout units
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Generalization 
of ReLUs

Linear 
regimes

Does not 
die

Does not 
saturate

Increase of the number of parameters
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Data pre-processing
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For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net)



Weight initialization
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How do I start?

Forward
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Initialization is extremely important

Optimum
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Initialization

Not guaranteed 

to reach the 

optimum
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How do I start?

Forward
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What 

happens to 

the 

gradients? No symmetry 
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All weights to zero

• Elaborate: the hidden units are all going to compute
the same function, gradients are going to be the
same
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Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens: 
– Network with 10 layers with 500 neurons each
– Tanh as activation functions

– Input unit Gaussian data
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Small random numbers

Forward
30

Input
Last 
layer

Activations 
become zero
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Small random numbers

Forward
31

f
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wixi + b

!small
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Small random numbers

Backward
32

f

 
X

i

wixi + b

!

Prof. Leal-Taixé and Prof. Niessner

1. Activation 
function 
gradient is ok

2. Compute the 
gradients wrt
the weights



Small random numbers
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!
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1. Activation 
function 
gradient is ok

2. Compute the 
gradients wrt
the weights

Gradients vanish



Big random numbers

• Gaussian with zero mean and standard deviation 1

• Let us see what happens: 
– Network with 10 layers with 500 neurons each
– Tanh as activation functions

– Input unit Gaussian data
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Big random numbers
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Everything 
is saturated
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How to solve this?

• Working on the initialization

• Working on the output generated by each layer
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?
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Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?
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Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Independent

Zero mean
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?
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Var(s) = Var(
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[E(wi)]
2Var(xi) + E[(xi)]
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=
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Var(xi)Var(wi) = (nVar(w))Var(x)

Identically distributed
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?
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Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs
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Xavier initialization

• How to ensure the variance of the output is the same 

as the input?
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Var(s) = Var(
nX
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Xavier initialization
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Mitigates the effect of  
activations going to 

zero
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Xavier initialization with ReLU
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ReLU kills half of the data

44

V ar(w) =
2

n

He 2015
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ReLU kills half of the data
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V ar(w) =
2

n

He 2015

It makes a huge difference!
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Tips and tricks

• Use ReLU and Xavier/2 initialization
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Batch normalization
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Our goal

• All we want is that our activations do not die out



Batch normalization

• Wish: unit Gaussian activations (in our example)
• Solution: let’s do it
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x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]
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Mean of your mini-batch 
examples over feature k



Batch normalization

• In each dimension of the features, you have a unit 
gaussian (in our example)
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Batch normalization

• In each dimension of the features, you have a unit 
gaussian (in our example)

• For NN in general à BN normalizes the mean and 
variance of the inputs to your activation functions
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BN layer

• A layer to be applied after Fully 
Connected (or Convolutional) layers 
and before non-linear activation 
functions

• Is it a good idea to have all unit 
Gaussians before tanh? This 
normalization might not be the best for 
the network!
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Batch normalization

• 1. Normalize

• 2. Allow the network to change the range
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x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k) These parameters will be 
optimized during backprop

Prof. Leal-Taixé and Prof. Niessner

Differentiable function so 
we can backprop through 

it….



Batch normalization

• 1. Normalize

• 2. Allow the network to change 
the range
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x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k)

backprop

�(k) =
q

Var[x(k)]

�(k) = E[x(k)]

The network can
learn to undo the 

normalization
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Batch normalization

• Is it ok to treat dimensions separately? Shown 
empirically that even if features are not decorrelated, 
convergence is still faster with this method

• You can set all biases of the layers before BN to zero, 
because they will be cancelled out by BN anyway
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BN: train vs test time

• Train time: mean and variance is taken over the mini-
batch

• Test-time: what happens if we can just process one 
image at a time?
– No chance to compute a meaningful mean and variance
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x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]



BN: train vs test time
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Training Testing

• Compute mean and 
variance from mini-
batch 1

• Compute mean and 
variance from mini-
batch 2

• Compute mean and 
variance from mini-
batch 3

• Compute mean and 
variance by running an 
exponentially weighted 
averaged across 
training mini-batches

µtest �2
test



BN: what do you get?

• Very deep nets are much easier to train à more 
stable gradients

• A much larger range of hyperparameters works 
similarly when using BN
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BN: a milestone
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Batch Normalization ⎯ a Milestone

Image from Yuin Wu, Kaiming He



BN: drawbacks
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Batch: also source of drawbacks

• Small batch

• Varying batch

val error



Other normalizations
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Our Method: Group Normalization

• GN is batch-independent

• Small batch

• Varying batch

val error



Other normalizations
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4 Wu and He
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Image size

Number of channels

Number of elements in the batch



Regularization
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Regularization

• Any strategy that aims to

64

Lower 
validation error

Increasing 
training error
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Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.Prof. Leal-Taixé and Prof. Niessner 65



Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.

Training 

error too 

big

Generalization 

gap is too big
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Weight decay
• L2 regularization

• Penalizes large weights
• Improves generalization
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Learning rate Gradient

��✓T
k ✓k

✓ 0 ✓/2 ✓/2
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Data augmentation

• A classifier has to be invariant to a wide variety of 
transformations
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Pose             Appearance           IlluminationProf. Leal-Taixé and Prof. Niessner 69



Data augmentation

• A classifier has to be invariant to a wide variety of 

transformations

• Helping the classifier: generate fake data simulating 

plausible transformations

70Prof. Leal-Taixé and Prof. Niessner



Data augmentation
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Data augmentation: random crops

• Random brightness and contrast changes
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Data augmentation: random crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L

– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales

– 10 fixed crops of 224x224: 4 corners + center + flips
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Data augmentation

• When comparing two networks make sure to use the 
same data augmentation!

• Consider data augmentation a part of your network 
design
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Early stopping

Training time is also a hyperparameter

75

Overfitting
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Early stopping

• Easy form of regularization
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✓0 ✓⇤

Overfitting

✏
✓1

✏
✓2

⌧

✓s
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Bagging and ensemble methods 

• Train three models and average their results

• Change a different algorithm for optimization or 
change the objective function

• If errors are uncorrelated, the expected combined 
error will decrease linearly with the ensemble size
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Bagging and ensemble methods 

• Bagging: uses k different datasets
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Training Set 1 Training Set 2 Training Set 3
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Dropout
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Dropout

• Disable a random set of neurons (typically 50%)

80Srivastava 2014

F
o
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ard

Prof. Leal-Taixé and Prof. Niessner



Dropout: intuition

• Using half the network = half capacity

81

Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant 

representations
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Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as model ensemble
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Dropout: intuition

• Two models in one

83

Model 1

Model 2
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Dropout: intuition

• Using half the network = half capacity

– Redundant representations

– Base your scores on more features

• Consider it as two models in one

– Training a large ensemble of models, each on different 

set of data (mini-batch) and with SHARED parameters

84

Reducing co-adaptation between neurons
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Dropout: test time

• All neurons are “turned on” – no dropout
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Conditions at train 
and test time are 

not the same
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Dropout: test time
• Test:

• Train:
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x y

z

✓1 ✓2

z = ✓1x+ ✓2y

E[z] =
1

4
(✓10 + ✓20

+✓1x+ ✓20

+✓10 + ✓2y

+✓1x+ ✓2y)

=
1

2
(✓1x+ ✓2y)

Dropout 
probability 

p=0.5

Weight scaling 
inference rule
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Dropout: verdict

• Efficient bagging method with parameter sharing

• Use it!

• Dropout reduces the effective capacity of a model à
larger models, more training time
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Recap
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What do we know so far?

Depth

W
id

th
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What do we know so far?

x0

x1

x2

X

✓0

✓1

✓2

Concept of a ‘Neuron’

Prof. Leal-Taixé and Prof. Niessner 90



What do we know so far?

Activation Functions (non-linearities)

Sigmoid: ! " = $
($&'())

tanh: tanh "

ReLU: max 0, "

Leaky ReLU: max 0.1", "
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What do we know so far?

!"
#"

!$
#$
%

*−1+ 1
#)*

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73
1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20
−0.20

−0.39

−0.39

−0.59

Backpropagation
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What do we know so far?

SGD Variations (Momentum, etc.)
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What do we know so far?

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Weight Initialization
(e.g., Xavier/2)

e.g., !"-reg: #" $ = ∑'()* +'"

Prof. Leal-Taixé and Prof. Niessner 94



Why not only more Layers?

• We can not make networks arbitrarily complex

– Why not just go deeper and get better?

– No structure!!

– It’s just brute force!

– Optimization becomes hard

– Performance plateaus / drops!

Prof. Leal-Taixé and Prof. Niessner 95



Administrative Things

• Happy holidays!

• Tuesday December 18th: solution to Exercise 2, 

introduction to exercise 3 and introduction to 

PyTorch! 

• Thursday January 10th: Starting with CNN

96Prof. Leal-Taixé and Prof. Niessner


