
Lecture 7 Recap

1Prof. Leal-Taixé and Prof. Niessner

Beyond linear

2

1-layer network:

x
W

128×128

f

10

f = Wx

Prof. Leal-Taixé and Prof. Niessner

Neural Network

Depth
3

W
id

th

Prof. Leal-Taixé and Prof. Niessner

Optimization

Prof. Leal-Taixé and Prof. Niessner 4

Loss functions

5Prof. Leal-Taixé and Prof. Niessner

Neural networks

6

Loss

(Softmax,

Hinge)

Prediction

Prof. Leal-Taixé and Prof. Niessner

What is the shape of

this function?

Sigmoid for binary predictions

0

7

x0

x1

x2

X Can be
interpreted as
a probability

1

p(yi = 1|xi,✓)

✓0

✓1

✓2

�(x) =
1

1 + e�x

Prof. Leal-Taixé and Prof. Niessner

Logitic regression

• Binary classification

x0

x1

x2

X
⇧i

✓0

✓1

✓2

Prof. Leal-Taixé and Prof. Niessner 8

Logistic regression

• Loss function

• Cost function

Prof. Leal-Taixé and Prof. Niessner 9

Minimization ŷi = �(xi✓)

L(⇧i, yi) = yi log⇧i + (1� yi) log(1�⇧i)

C(✓) = � 1

n

nX

i=1

yi log⇧i + (1� yi) log(1�⇧i)

One training sample

Softmax regression

• Cost function for the binary case

• Extension to multiple classes

Prof. Leal-Taixé and Prof. Niessner 10

C(✓) = � 1

n

nX

i=1

yi log⇧i + (1� yi) log(1�⇧i)

C(✓) = � 1

n

nX

i=1

MX

c=1

yi,c log pi,c

cBinary indicator whether is
the label for image i

Probability given by our
sigmoid function

Softmax formulation

• What if we have multiple classes?

11

Softmax

Prof. Leal-Taixé and Prof. Niessner

⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1

exi✓1 + exi✓2

⇧3

x0

x1

x2

Softmax formulation

• Three neurons in the output layer for three classes

12

⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1

exi✓1 + exi✓2

Prof. Leal-Taixé and Prof. Niessner

⇧3

x0

x1

x2

Softmax formulation

• What if we have multiple classes?

• You can no longer assign to. as in the binary
case, because all outputs need to sum to 1

13Prof. Leal-Taixé and Prof. Niessner

C(✓) = � 1

n

nX

i=1

MX

c=1

yi,c log pi,c

pi,c ⇧i

X

c

⇧i,c

Softmax formulation

• Softmax takes M inputs (Scores) and outputs M
probabilities (M is the number of classes)

Prof. Leal-Taixé and Prof. Niessner 14

⇧2 =
exi✓2

exi✓1 + exi✓2

⇧1 =
exi✓1

exi✓1 + exi✓2

⇧3

p(dog|Xi)

p(cat|Xi)

p(bird|Xi)

=
escat

P
c e

sc

Score for
class cat
given by all
the layers of
the network

Normalization

Loss functions

• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)

15

Li = � log

✓
esyiP
k e

sk

◆

Prof. Leal-Taixé and Prof. Niessner

Evaluate the ground

truth score for the

image

Li =
X

k 6=yi

max(0, sk � syi + 1)

Comes from Maximum Likelihood Estimate

Loss functions

• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well enough”

16Prof. Leal-Taixé and Prof. Niessner

Activation functions

17Prof. Leal-Taixé and Prof. Niessner

Sigmoid
Forward

18

�(x) =
1

1 + e�x

@L

@�

@�

@x

@L

@x
=

@�

@x

@L

@�

x = 6
Saturated

neurons kill the
gradient flow

Prof. Leal-Taixé and Prof. Niessner

Problem of positive output

19

w1

w2

More on zero-
mean data later

Prof. Leal-Taixé and Prof. Niessner

tanh

20

Zero-
centered

Still saturates

Still saturates

LeCun 1991Prof. Leal-Taixé and Prof. Niessner

Rectified Linear Units (ReLU)

21

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

Prof. Leal-Taixé and Prof. Niessner

Maxout units

22

Generalization
of ReLUs

Linear
regimes

Does not
die

Does not
saturate

Increase of the number of parameters
Prof. Leal-Taixé and Prof. Niessner

Data pre-processing

Prof. Leal-Taixé and Prof. Niessner 23

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net)

Weight initialization

24Prof. Leal-Taixé and Prof. Niessner

How do I start?

Forward

25

w
w

w
w

Prof. Leal-Taixé and Prof. Niessner

Initialization is extremely important

Optimum

26

Initialization

Not guaranteed

to reach the

optimum
Prof. Leal-Taixé and Prof. Niessner

How do I start?

Forward

27

w
w

w
w

w = 0

f

X

i

wixi + b

!

What

happens to

the

gradients? No symmetry

breakingProf. Leal-Taixé and Prof. Niessner

All weights to zero

• Elaborate: the hidden units are all going to compute
the same function, gradients are going to be the
same

28Prof. Leal-Taixé and Prof. Niessner

Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens:
– Network with 10 layers with 500 neurons each
– Tanh as activation functions

– Input unit Gaussian data

29Prof. Leal-Taixé and Prof. Niessner

Small random numbers

Forward
30

Input
Last
layer

Activations
become zero

Prof. Leal-Taixé and Prof. Niessner

Small random numbers

Forward
31

f

X

i

wixi + b

!small

Prof. Leal-Taixé and Prof. Niessner

Small random numbers

Backward
32

f

X

i

wixi + b

!

Prof. Leal-Taixé and Prof. Niessner

1. Activation
function
gradient is ok

2. Compute the
gradients wrt
the weights

Small random numbers

33

f

X

i

wixi + b

!

Prof. Leal-Taixé and Prof. Niessner

1. Activation
function
gradient is ok

2. Compute the
gradients wrt
the weights

Gradients vanish

Big random numbers

• Gaussian with zero mean and standard deviation 1

• Let us see what happens:
– Network with 10 layers with 500 neurons each
– Tanh as activation functions

– Input unit Gaussian data

34Prof. Leal-Taixé and Prof. Niessner

Big random numbers

35

Everything
is saturated

Prof. Leal-Taixé and Prof. Niessner

How to solve this?

• Working on the initialization

• Working on the output generated by each layer

Prof. Leal-Taixé and Prof. Niessner 36

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

37

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Glorot 2010Prof. Leal-Taixé and Prof. Niessner

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

38

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Independent

Zero mean

Prof. Leal-Taixé and Prof. Niessner

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

39

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Identically distributed
Prof. Leal-Taixé and Prof. Niessner

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

40

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs
Prof. Leal-Taixé and Prof. Niessner

Xavier initialization

• How to ensure the variance of the output is the same

as the input?

41

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

1

V ar(w) =
1

n

Prof. Leal-Taixé and Prof. Niessner

Xavier initialization

42

Mitigates the effect of
activations going to

zero

Prof. Leal-Taixé and Prof. Niessner

Xavier initialization with ReLU

43Prof. Leal-Taixé and Prof. Niessner

ReLU kills half of the data

44

V ar(w) =
2

n

He 2015
Prof. Leal-Taixé and Prof. Niessner

ReLU kills half of the data

45

V ar(w) =
2

n

He 2015

It makes a huge difference!

Prof. Leal-Taixé and Prof. Niessner

Tips and tricks

• Use ReLU and Xavier/2 initialization

46Prof. Leal-Taixé and Prof. Niessner

Batch normalization

47Prof. Leal-Taixé and Prof. Niessner

Our goal

• All we want is that our activations do not die out

Batch normalization

• Wish: unit Gaussian activations (in our example)
• Solution: let’s do it

49

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Ioffe and Szegedy 2015Prof. Leal-Taixé and Prof. Niessner

Mean of your mini-batch
examples over feature k

Batch normalization

• In each dimension of the features, you have a unit
gaussian (in our example)

50

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
 =

 m
in

i-
b

at
ch

 s
iz

e
Mean of your mini-batch
examples over feature k

Prof. Leal-Taixé and Prof. Niessner

Batch normalization

• In each dimension of the features, you have a unit
gaussian (in our example)

• For NN in general à BN normalizes the mean and
variance of the inputs to your activation functions

51Prof. Leal-Taixé and Prof. Niessner

BN layer

• A layer to be applied after Fully
Connected (or Convolutional) layers
and before non-linear activation
functions

• Is it a good idea to have all unit
Gaussians before tanh? This
normalization might not be the best for
the network!

52Prof. Leal-Taixé and Prof. Niessner

Batch normalization

• 1. Normalize

• 2. Allow the network to change the range

53

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k) These parameters will be
optimized during backprop

Prof. Leal-Taixé and Prof. Niessner

Differentiable function so
we can backprop through

it….

Batch normalization

• 1. Normalize

• 2. Allow the network to change
the range

54

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k)

backprop

�(k) =
q

Var[x(k)]

�(k) = E[x(k)]

The network can
learn to undo the

normalization

Prof. Leal-Taixé and Prof. Niessner

Batch normalization

• Is it ok to treat dimensions separately? Shown
empirically that even if features are not decorrelated,
convergence is still faster with this method

• You can set all biases of the layers before BN to zero,
because they will be cancelled out by BN anyway

55Prof. Leal-Taixé and Prof. Niessner

BN: train vs test time

• Train time: mean and variance is taken over the mini-
batch

• Test-time: what happens if we can just process one
image at a time?
– No chance to compute a meaningful mean and variance

Prof. Leal-Taixé and Prof. Niessner 56

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

BN: train vs test time

Prof. Leal-Taixé and Prof. Niessner 57

Training Testing

• Compute mean and
variance from mini-
batch 1

• Compute mean and
variance from mini-
batch 2

• Compute mean and
variance from mini-
batch 3

• Compute mean and
variance by running an
exponentially weighted
averaged across
training mini-batches

µtest �2
test

BN: what do you get?

• Very deep nets are much easier to train à more
stable gradients

• A much larger range of hyperparameters works
similarly when using BN

Prof. Leal-Taixé and Prof. Niessner 58

BN: a milestone

59Prof. Leal-Taixé and Prof. Niessner

Batch Normalization ⎯ a Milestone

Image from Yuin Wu, Kaiming He

BN: drawbacks

60Prof. Leal-Taixé and Prof. Niessner Image from Yuin Wu, Kaiming He

Batch: also source of drawbacks

• Small batch

• Varying batch

val error

Other normalizations

61Prof. Leal-Taixé and Prof. Niessner Image from Yuin Wu, Kaiming He

Our Method: Group Normalization

• GN is batch-independent

• Small batch

• Varying batch

val error

Other normalizations

62Prof. Leal-Taixé and Prof. Niessner Image from Yuin Wu, Kaiming He

4 Wu and He
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Image size

Number of channels

Number of elements in the batch

Regularization

63Prof. Leal-Taixé and Prof. Niessner

Regularization

• Any strategy that aims to

64

Lower
validation error

Increasing
training error

Prof. Leal-Taixé and Prof. Niessner

Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.Prof. Leal-Taixé and Prof. Niessner 65

Overfitting and underfitting

Credits: Deep Learning. Goodfellow et al.

Training

error too

big

Generalization

gap is too big

Prof. Leal-Taixé and Prof. Niessner 66

Weight decay
• L2 regularization

• Penalizes large weights
• Improves generalization

67

Learning rate Gradient

��✓T
k ✓k

✓ 0 ✓/2 ✓/2

Prof. Leal-Taixé and Prof. Niessner

Data augmentation

• A classifier has to be invariant to a wide variety of
transformations

68Prof. Leal-Taixé and Prof. Niessner

Pose Appearance IlluminationProf. Leal-Taixé and Prof. Niessner 69

Data augmentation

• A classifier has to be invariant to a wide variety of

transformations

• Helping the classifier: generate fake data simulating

plausible transformations

70Prof. Leal-Taixé and Prof. Niessner

Data augmentation

71Krizhevsky 2012Prof. Leal-Taixé and Prof. Niessner

Data augmentation: random crops

• Random brightness and contrast changes

72Prof. Leal-Taixé and Prof. Niessner Krizhevsky 2012

Data augmentation: random crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L

– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales

– 10 fixed crops of 224x224: 4 corners + center + flips

73Prof. Leal-Taixé and Prof. Niessner Krizhevsky 2012

Data augmentation

• When comparing two networks make sure to use the
same data augmentation!

• Consider data augmentation a part of your network
design

74Prof. Leal-Taixé and Prof. Niessner

Early stopping

Training time is also a hyperparameter

75

Overfitting

Prof. Leal-Taixé and Prof. Niessner

Early stopping

• Easy form of regularization

76

✓0 ✓⇤

Overfitting

✏
✓1

✏
✓2

⌧

✓s

Prof. Leal-Taixé and Prof. Niessner

Bagging and ensemble methods

• Train three models and average their results

• Change a different algorithm for optimization or
change the objective function

• If errors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size

77Prof. Leal-Taixé and Prof. Niessner

Bagging and ensemble methods

• Bagging: uses k different datasets

78

Training Set 1 Training Set 2 Training Set 3
Prof. Leal-Taixé and Prof. Niessner

Dropout

79Prof. Leal-Taixé and Prof. Niessner

Dropout

• Disable a random set of neurons (typically 50%)

80Srivastava 2014

F
o

rw
ard

Prof. Leal-Taixé and Prof. Niessner

Dropout: intuition

• Using half the network = half capacity

81

Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant

representations

Prof. Leal-Taixé and Prof. Niessner

Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as model ensemble

82Prof. Leal-Taixé and Prof. Niessner

Dropout: intuition

• Two models in one

83

Model 1

Model 2

Prof. Leal-Taixé and Prof. Niessner

Dropout: intuition

• Using half the network = half capacity

– Redundant representations

– Base your scores on more features

• Consider it as two models in one

– Training a large ensemble of models, each on different

set of data (mini-batch) and with SHARED parameters

84

Reducing co-adaptation between neurons

Prof. Leal-Taixé and Prof. Niessner

Dropout: test time

• All neurons are “turned on” – no dropout

85

Conditions at train
and test time are

not the same

Prof. Leal-Taixé and Prof. Niessner

Dropout: test time
• Test:

• Train:

86

x y

z

✓1 ✓2

z = ✓1x+ ✓2y

E[z] =
1

4
(✓10 + ✓20

+✓1x+ ✓20

+✓10 + ✓2y

+✓1x+ ✓2y)

=
1

2
(✓1x+ ✓2y)

Dropout
probability

p=0.5

Weight scaling
inference rule

Prof. Leal-Taixé and Prof. Niessner

Dropout: verdict

• Efficient bagging method with parameter sharing

• Use it!

• Dropout reduces the effective capacity of a model à
larger models, more training time

87Prof. Leal-Taixé and Prof. Niessner

Recap

88Prof. Leal-Taixé and Prof. Niessner

What do we know so far?

Depth

W
id

th

Prof. Leal-Taixé and Prof. Niessner 89

What do we know so far?

x0

x1

x2

X

✓0

✓1

✓2

Concept of a ‘Neuron’

Prof. Leal-Taixé and Prof. Niessner 90

What do we know so far?

Activation Functions (non-linearities)

Sigmoid: ! " = $
($&'())

tanh: tanh "

ReLU: max 0, "

Leaky ReLU: max 0.1", "

Prof. Leal-Taixé and Prof. Niessner 91

What do we know so far?

!"
#"

!$
#$
%

*−1+ 1
#)*

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73
1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20
−0.20

−0.39

−0.39

−0.59

Backpropagation

Prof. Leal-Taixé and Prof. Niessner 92

What do we know so far?

SGD Variations (Momentum, etc.)

Prof. Leal-Taixé and Prof. Niessner 93

What do we know so far?

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Weight Initialization
(e.g., Xavier/2)

e.g., !"-reg: #" $ = ∑'()* +'"

Prof. Leal-Taixé and Prof. Niessner 94

Why not only more Layers?

• We can not make networks arbitrarily complex

– Why not just go deeper and get better?

– No structure!!

– It’s just brute force!

– Optimization becomes hard

– Performance plateaus / drops!

Prof. Leal-Taixé and Prof. Niessner 95

Administrative Things

• Happy holidays!

• Tuesday December 18th: solution to Exercise 2,

introduction to exercise 3 and introduction to

PyTorch!

• Thursday January 10th: Starting with CNN

96Prof. Leal-Taixé and Prof. Niessner

