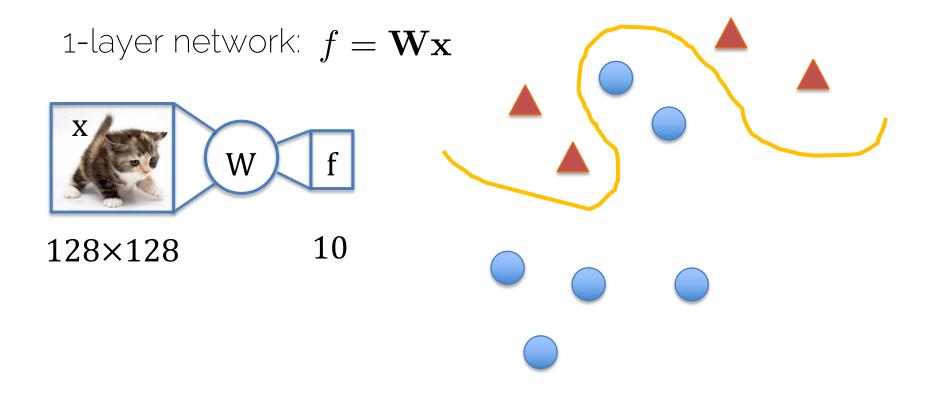


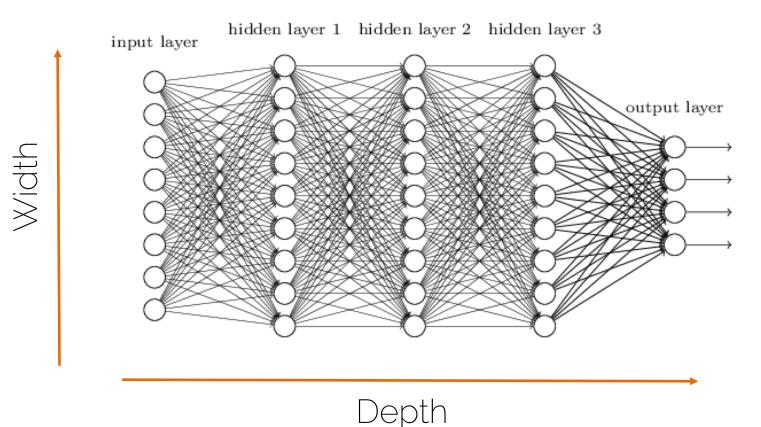
Lecture 7 Recap

Prof. Leal-Taixé and Prof. Niessner

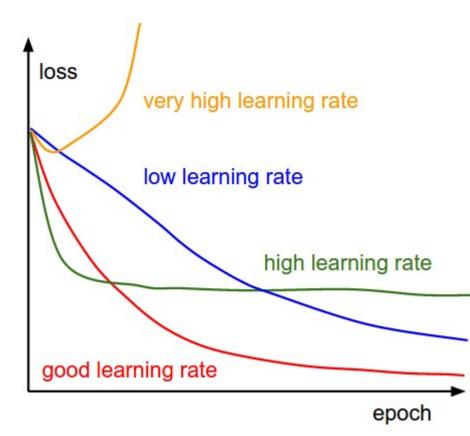
Beyond linear



Neural Network



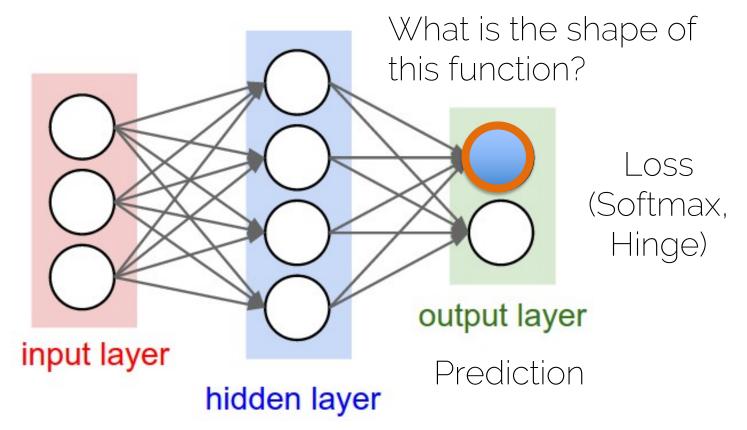
Optimization

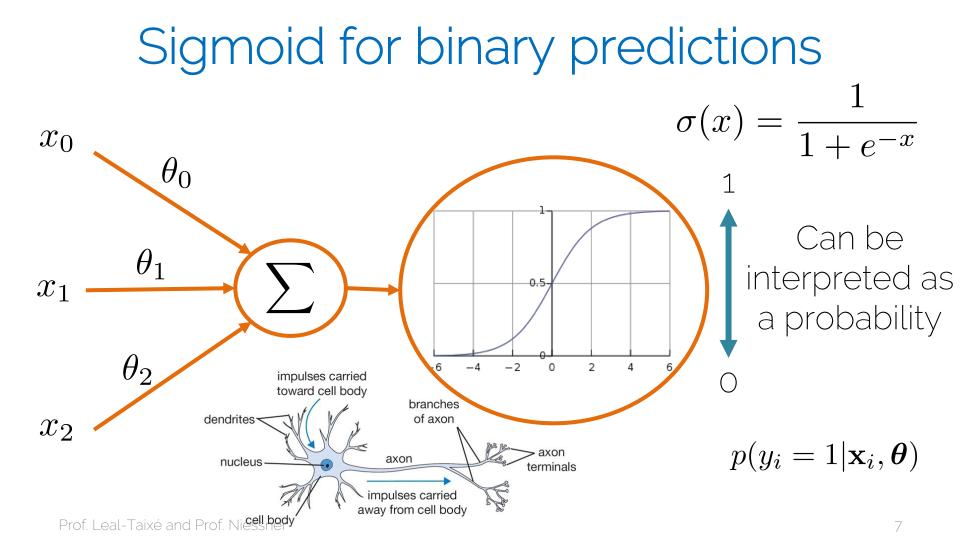


Loss functions

Prof. Leal-Taixé and Prof. Niessner

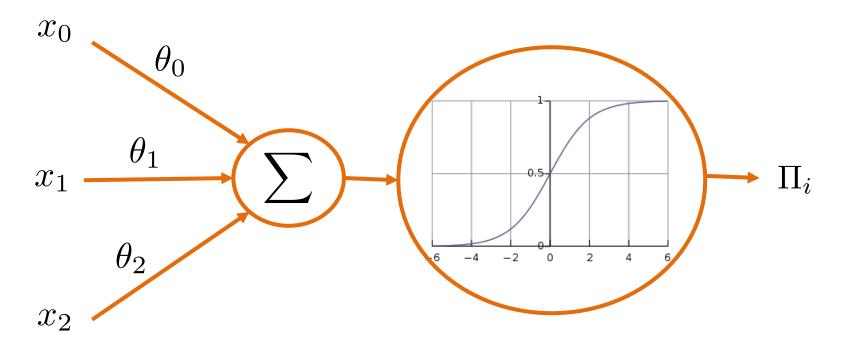
Neural networks





Logitic regression

• Binary classification



Logistic regression

• Loss function

$$\mathcal{L}(\Pi_i, y_i) = y_i \log \Pi_i + (1 - y_i) \log(1 - \Pi_i)$$
One training sample

Cost function

$$C(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \Pi_i + (1 - y_i) \log(1 - \Pi_i)$$

Minimization
$$\sigma(\mathbf{x}_i \boldsymbol{\theta})$$

Softmax regression

• Cost function for the binary case

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \Pi_i + (1 - y_i) \log(1 - \Pi_i)$$

• Extension to multiple classes

Prof. Leal-

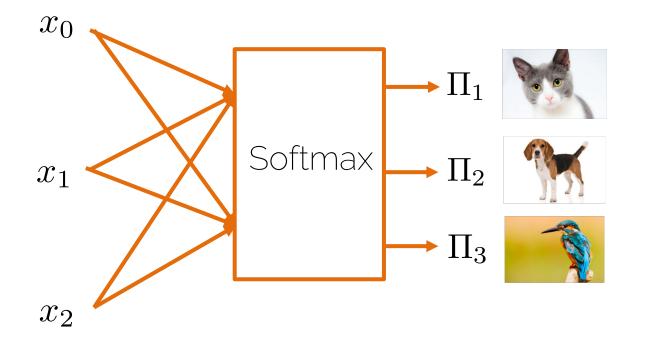
Probability given by our sigmoid function

$$C(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{M} y_{i,c} \log p_{i,c}$$

Binary indicator whether c is the label for image i

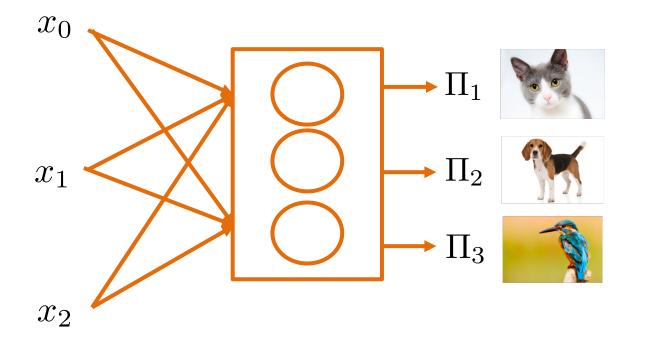
Softmax formulation

• What if we have multiple classes?



Softmax formulation

• Three neurons in the output layer for three classes



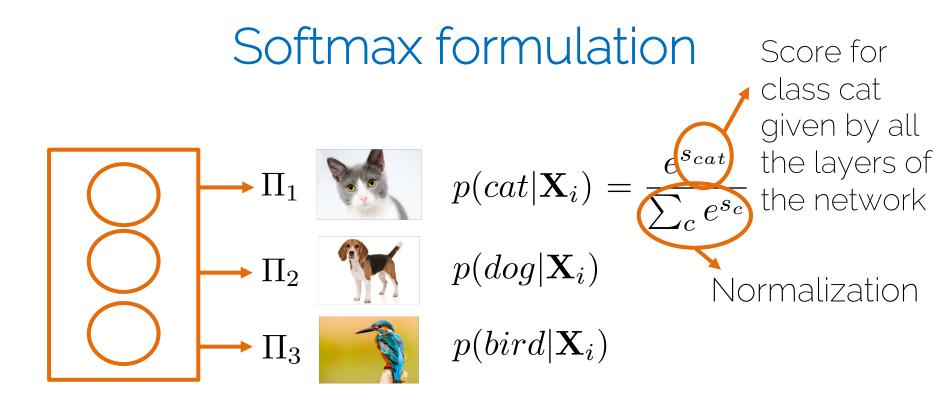
Softmax formulation

• What if we have multiple classes?

$$C(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{M} y_{i,c} \log p_{i,c}$$

• You can no longer assign $p_{i,c}$ to. Π_i as in the binary case, because all outputs need to sum to 1

$$\sum_{c} \Pi_{i,c}$$



• Softmax takes M inputs (Scores) and outputs M probabilities (M is the number of classes)

Loss functions

Softmax loss function

Evaluate the ground truth score for the image

Comes from Maximum Likelihood Estimate

 $L_i =$

• Hinge Loss (derived from the Multiclass SVM loss)

-log

$$L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1)$$

Loss functions

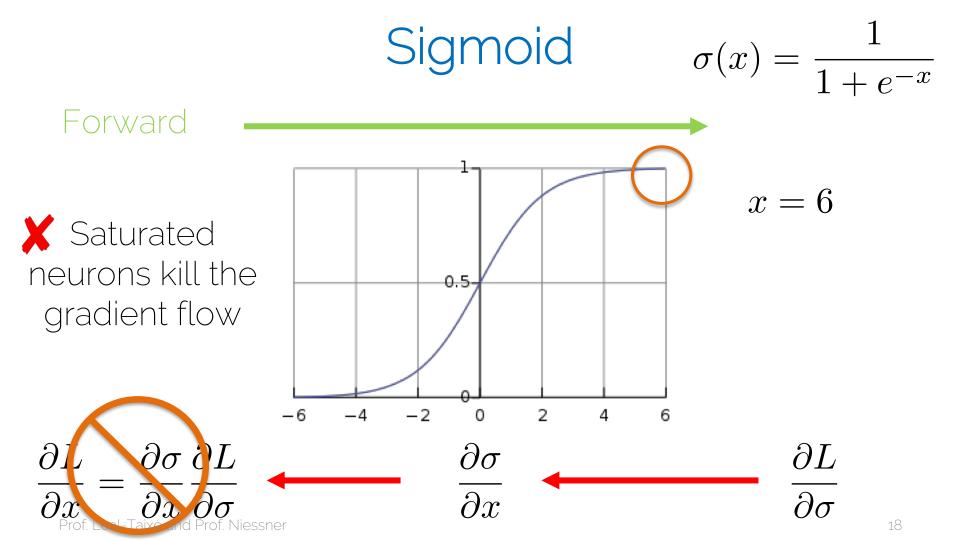
- Softmax loss function
 - Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

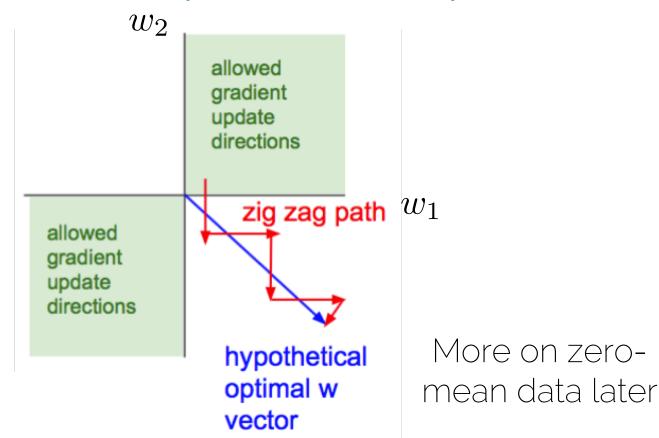
- Saturates whenever it has learned a class "well enough"

Activation functions

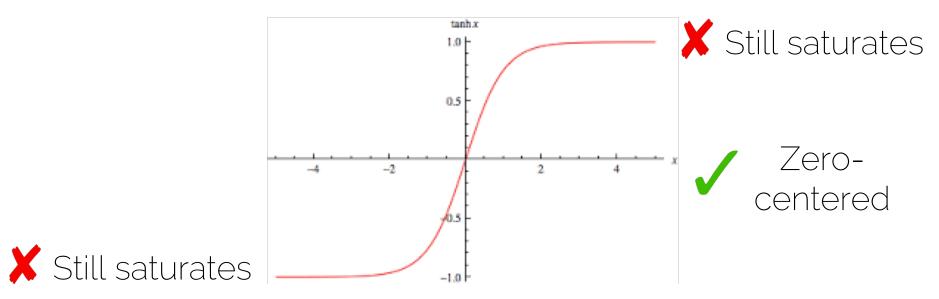
Prof. Leal-Taixé and Prof. Niessner



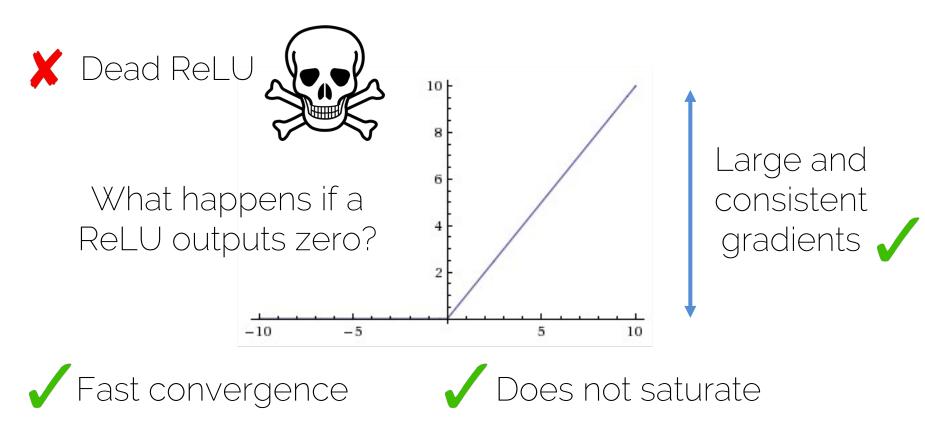
Problem of positive output



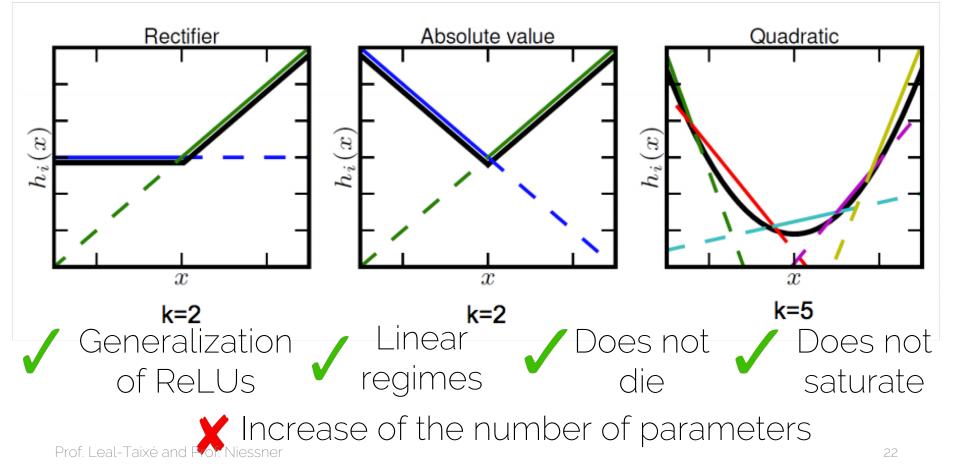
tanh



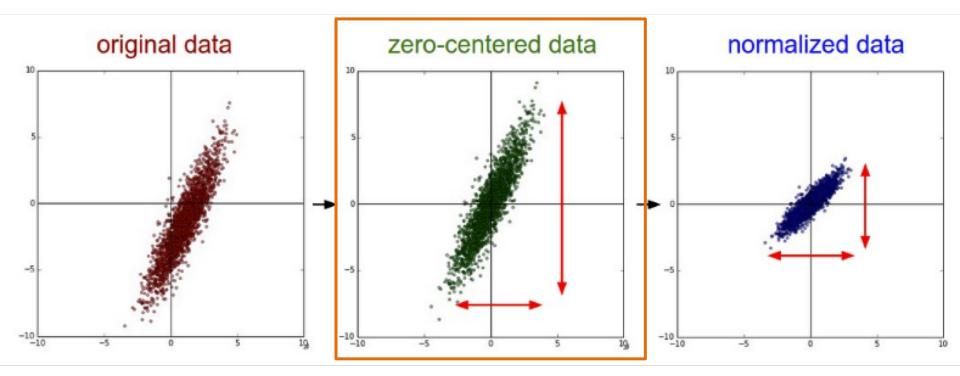
Rectified Linear Units (ReLU)



Maxout units



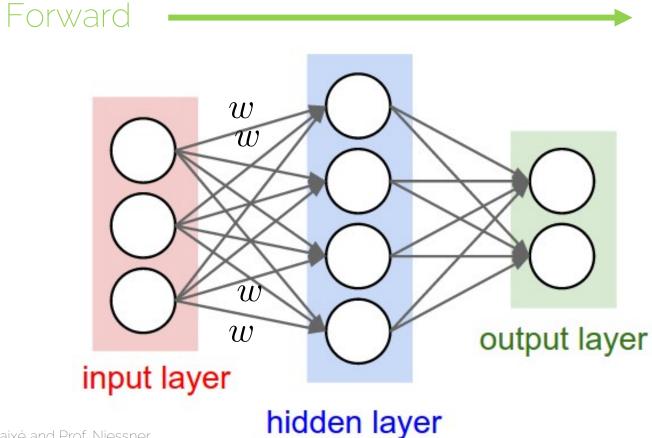
Data pre-processing



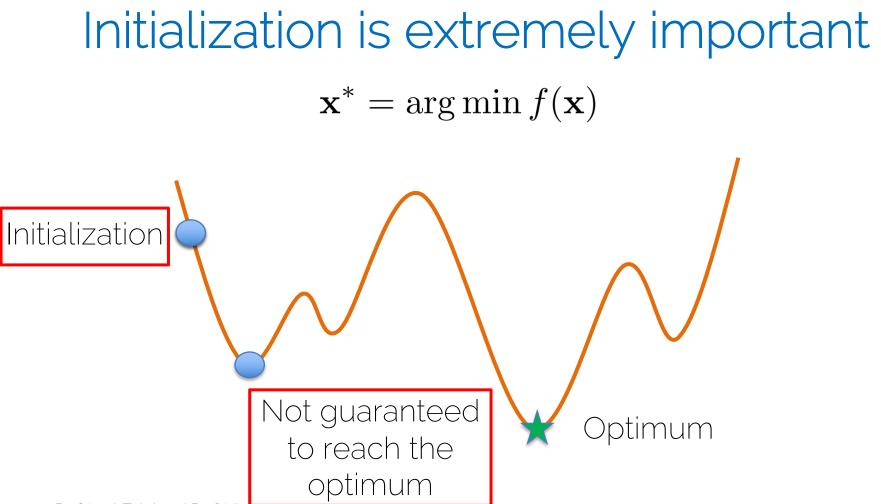
For images subtract the mean image (AlexNet) or per-Prof. Leal-Taixé and Prof. Niessner channel mean (VGG-Net)

Weight initialization

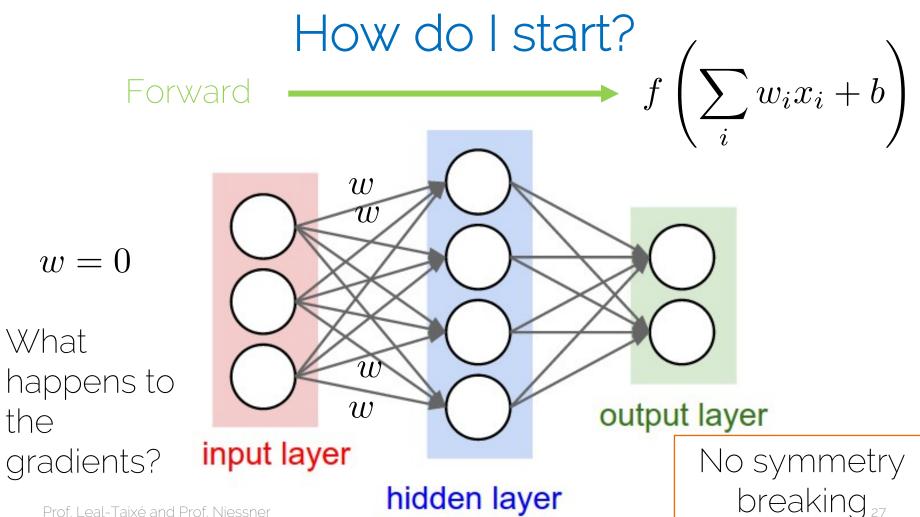
How do I start?



Prof. Leal-Taixé and Prof. Niessner



Prof. Leal-Taixé and Prof. Niessner

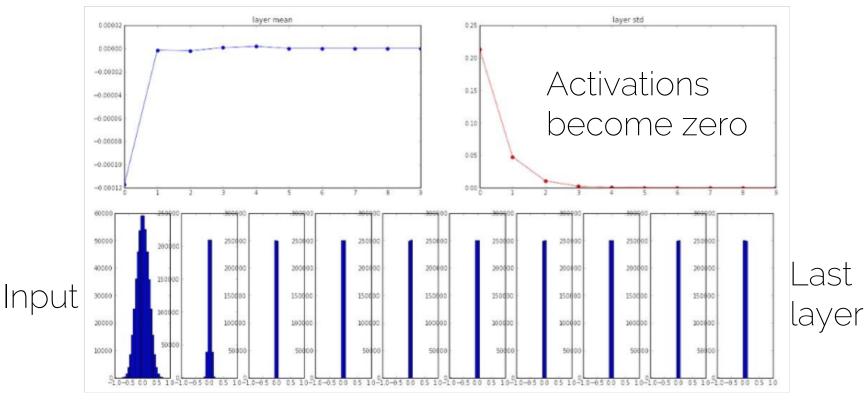


All weights to zero

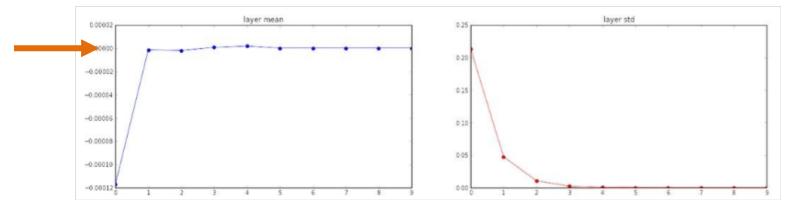
• Elaborate: the hidden units are all going to compute the same function, gradients are going to be the same

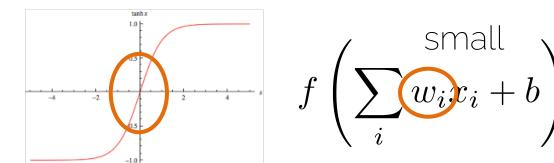
• Gaussian with zero mean and standard deviation 0.01

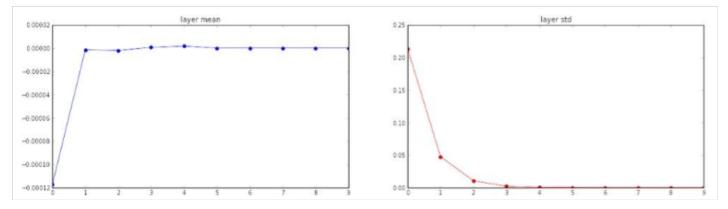
- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data



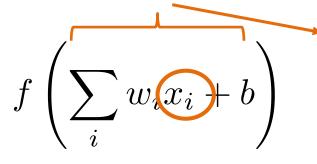
Prof. Leal-Taixé and Prof. Niessner



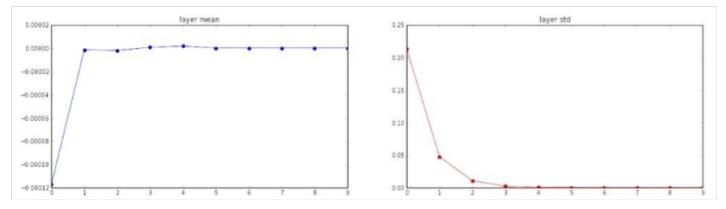




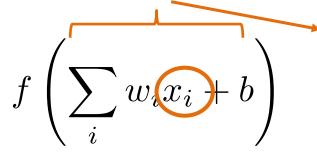
1. Activation function gradient is ok



2. Compute the gradients wrt the weights



1. Activation function gradient is ok



Gradients vanish

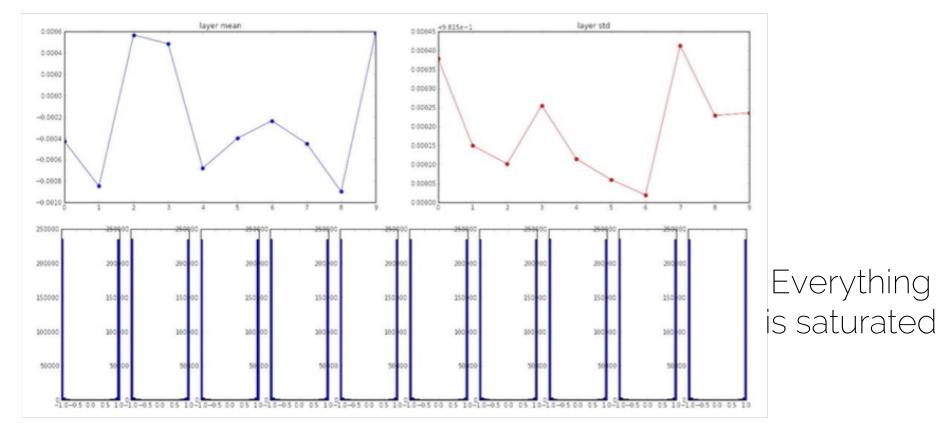
2. Compute the gradients wrt the weights

Big random numbers

• Gaussian with zero mean and standard deviation 1

- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

Big random numbers



How to solve this?

• Working on the initialization

• Working on the output generated by each layer

$$\operatorname{Var}(s) = \operatorname{Var}(\sum_{i}^{n} w_{i} x_{i}) = \sum_{i}^{n} \operatorname{Var}(w_{i} x_{i})$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$

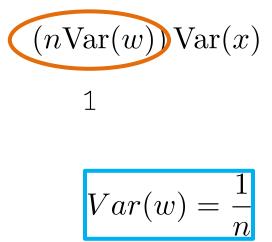
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

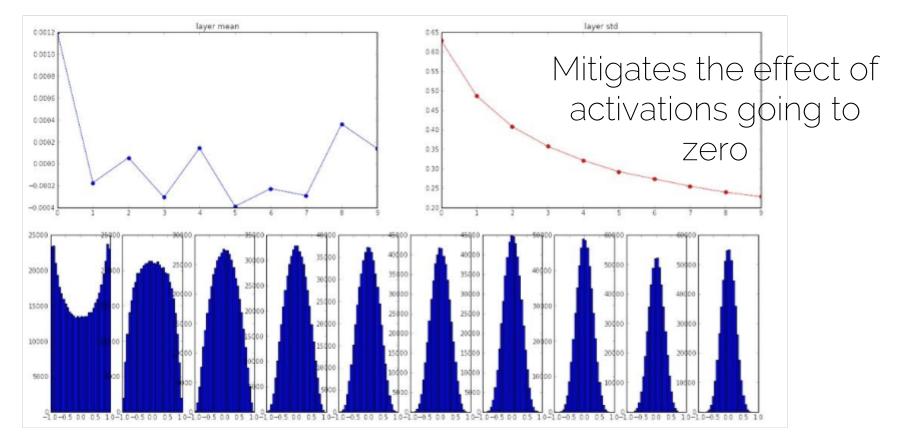
Zero mean

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = (nVar(w)) Var(x)$$
$$Identically distributed$$

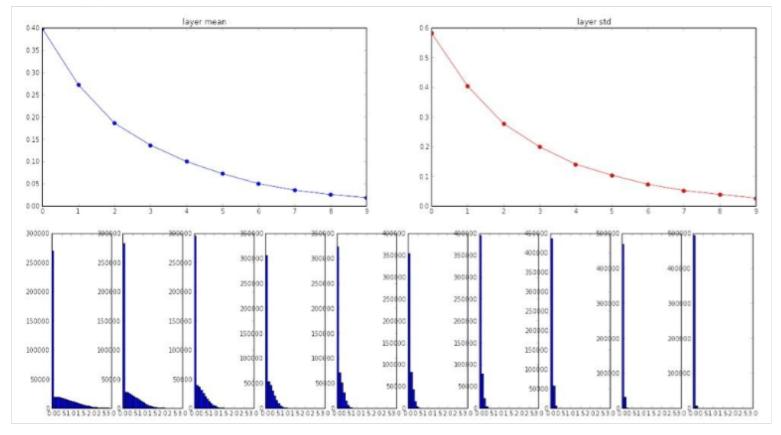
$$\begin{aligned} \operatorname{Var}(s) &= \operatorname{Var}(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} \operatorname{Var}(w_{i}x_{i}) \\ &= \sum_{i}^{n} [E(w_{i})]^{2} \operatorname{Var}(x_{i}) + E[(x_{i})]^{2} \operatorname{Var}(w_{i}) + \operatorname{Var}(x_{i}) \operatorname{Var}(w_{i}) \\ &= \sum_{i}^{n} \operatorname{Var}(x_{i}) \operatorname{Var}(w_{i}) = (n) \operatorname{Var}(w) \operatorname{Var}(x) \\ & \operatorname{Variance \ gets \ multiplied \ by \ the \ number \ of \ inputs \\ & \operatorname{Prof. \ Leal-Taixé \ and \ Prof. \ Nessner} \end{aligned}$$

• How to ensure the variance of the output is the same as the input?

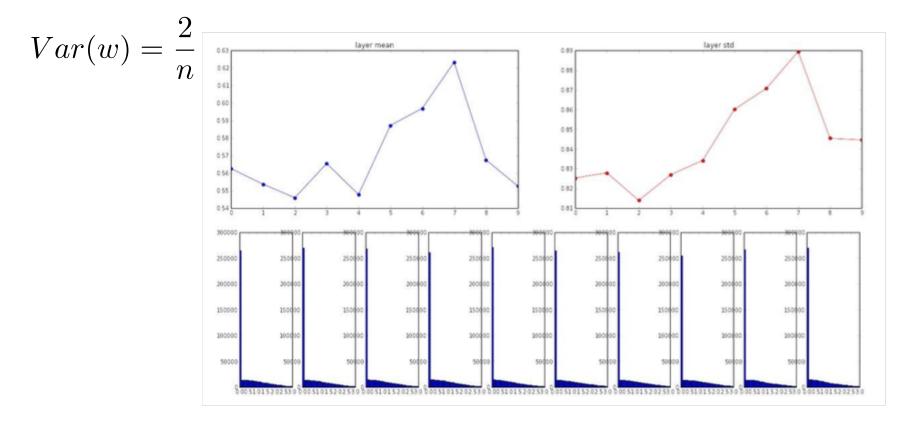




Xavier initialization with ReLU

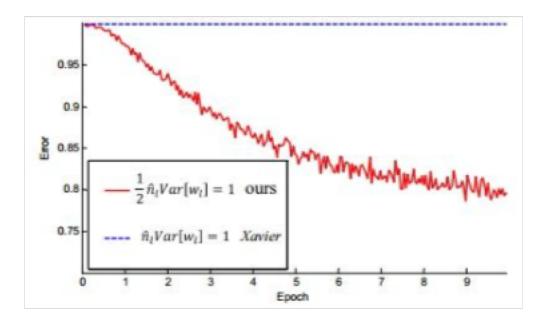


ReLU kills half of the data



ReLU kills half of the data

$$Var(w) = \frac{2}{n}$$
 It makes a huge difference!



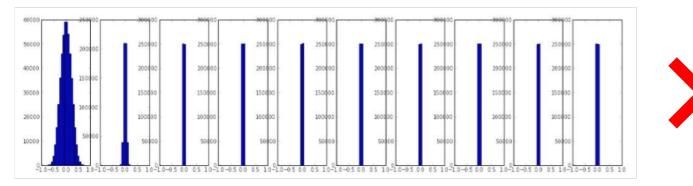
Tips and tricks

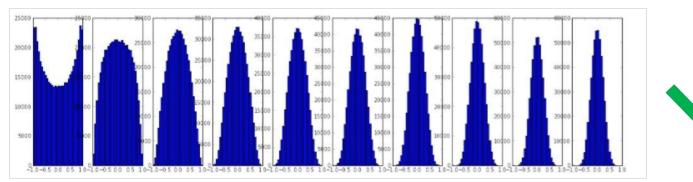
• Use ReLU and Xavier/2 initialization

Prof. Leal-Taixé and Prof. Niessner

Our goal

• All we want is that our activations do not die out

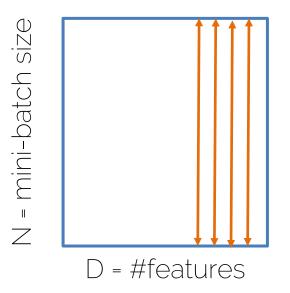




- Wish: unit Gaussian activations (in our example)
- Solution: let's do it

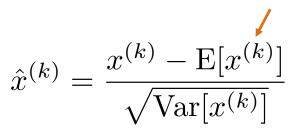
Mean of your mini-batch examples over feature k

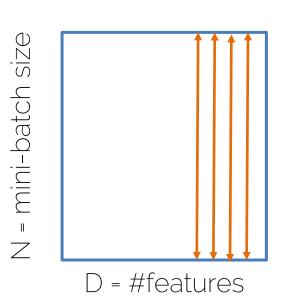
$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$



In each dimension of the features, you have a unit gaussian (in our example)

Mean of your mini-batch examples over feature k





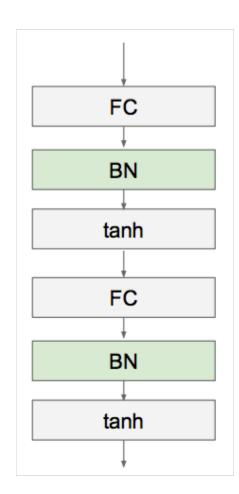
• In each dimension of the features, you have a unit gaussian (in our example)

• For NN in general \rightarrow BN normalizes the mean and variance of the inputs to your activation functions

BN layer

• A layer to be applied after Fully Connected (or Convolutional) layers and **before** non-linear activation functions

 Is it a good idea to have all unit Gaussians before tanh? This normalization might not be the best for the network!



• 1. Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

Differentiable function so we can backprop through it....

• 2. Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

These parameters will be optimized during backprop

• 1. Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

• 2. Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$
backprop

The network *can* learn to undo the normalization

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

• Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

• You can set all biases of the layers before BN to zero, because they will be cancelled out by BN anyway

BN: train vs test time

 Train time: mean and variance is taken over the minibatch

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

- Test-time: what happens if we can just process one image at a time?
 - No chance to compute a meaningful mean and variance

BN: train vs test time

Training

- Compute mean and variance from minibatch 1
- Compute mean and variance from minibatch 2
- Compute mean and variance from minibatch 3

Testing

 Compute mean and variance by running an exponentially weighted averaged across training mini-batches

 μ_{test}

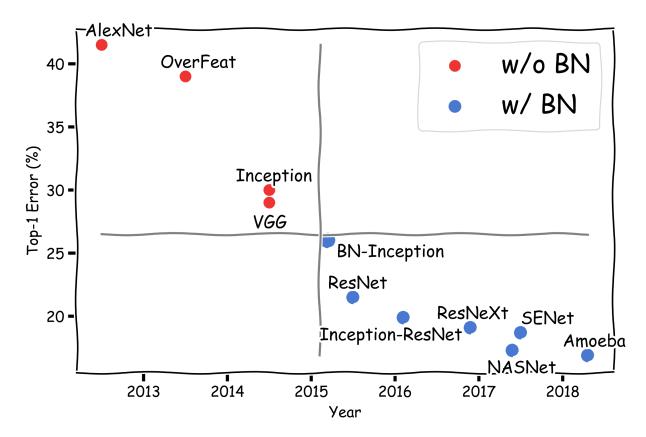
 σ_{test}^2

BN: what do you get?

Very deep nets are much easier to train → more stable gradients

• A much larger range of hyperparameters works similarly when using BN

BN: a milestone



Prof. Leal-Taixé and Prof. Niessner

Image from Yuin Wu, Kaiming He

BN: drawbacks val error 36 +Batch Norm

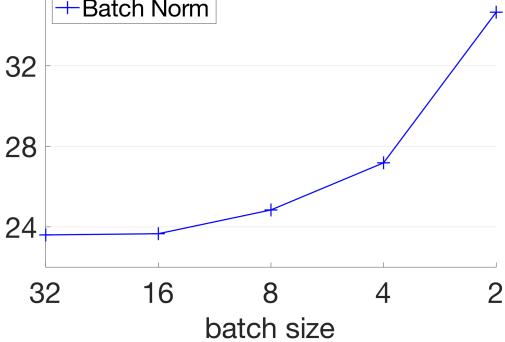
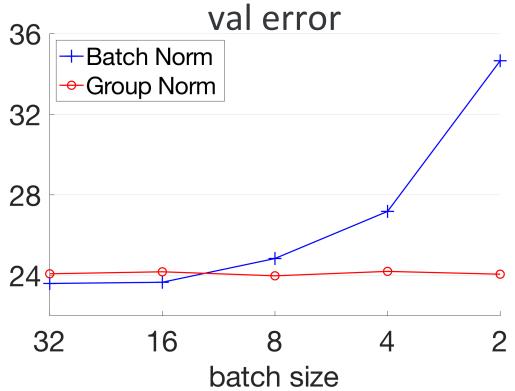
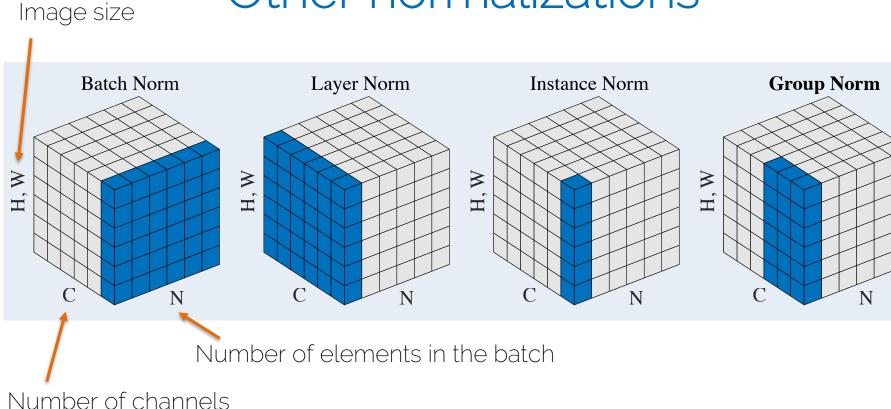


Image from Yuin Wu, Kaiming He

Other normalizations



Other normalizations



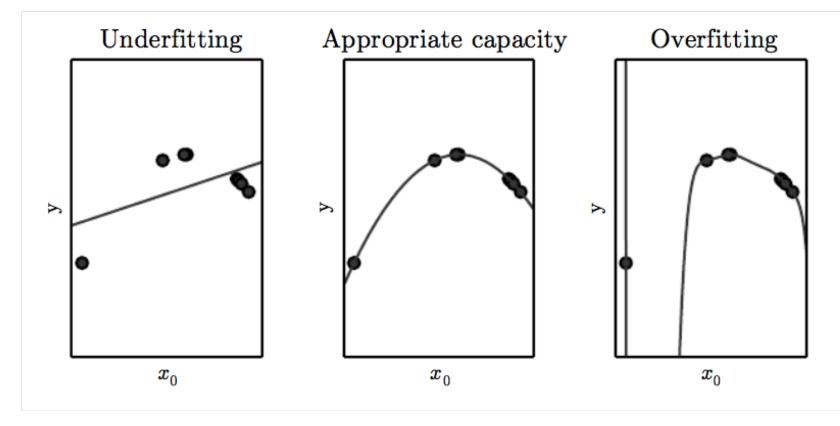
Regularization

• Any strategy that aims to

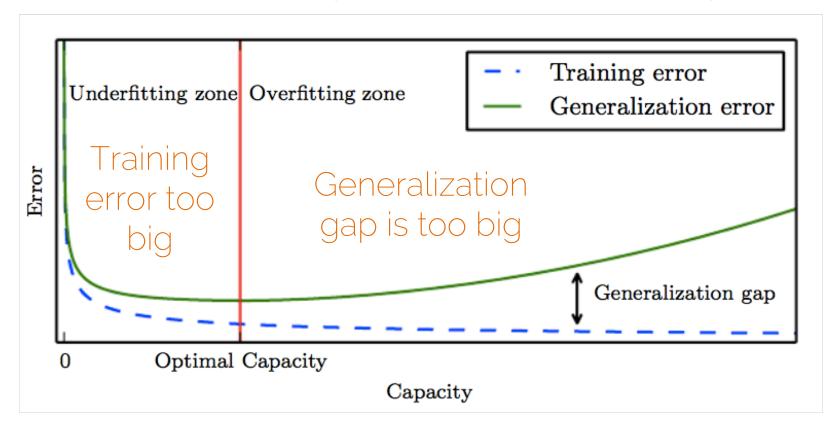
Lower validation error

Increasing training error

Overfitting and underfitting



Overfitting and underfitting



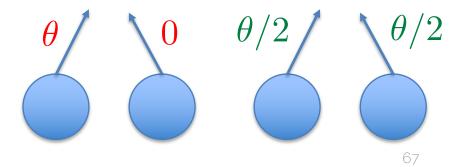
Weight decay

• L² regularization

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i) - \lambda \boldsymbol{\theta}_k^T \boldsymbol{\theta}_k$$

Learning rate Gradient

- Penalizes large weights
- Improves generalization



Data augmentation

• A classifier has to be invariant to a wide variety of transformations

cat

All

Images Videos

News

Shopping More

Tools Settings

0

Ļ

Q

Sign in

SafeSearch -

Cute

And Kittens

Clipart

Drawing

White Cats And Kittens

Data augmentation

• A classifier has to be invariant to a wide variety of transformations

Helping the classifier: generate fake data simulating
 plausible transformations

Data augmentation

a. No augmentation (= 1 image)

224x224

b. Flip augmentation (= 2 images)

224x224

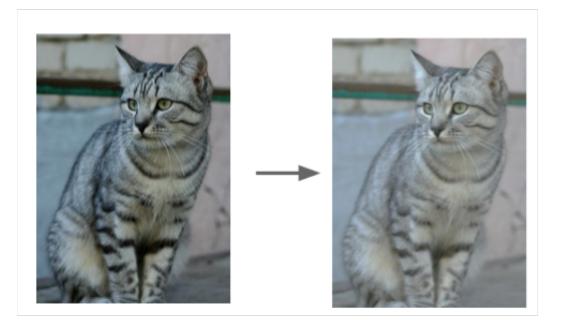
c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

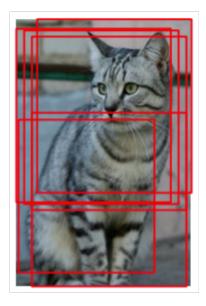
Data augmentation: random crops

• Random brightness and contrast changes



Data augmentation: random crops

- Training: random crops
 - Pick a random L in [256,480]
 - Resize training image, short side L
 - Randomly sample crops of 224x224



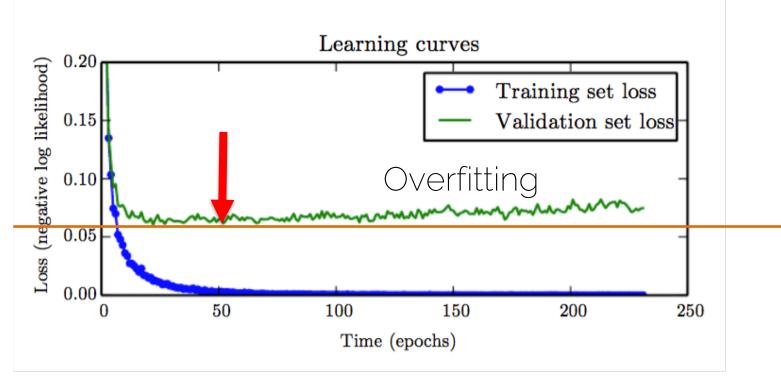
- Testing: fixed set of crops
 Resize image at N scales
 - 10 fixed crops of 224x224: 4 corners + center + flips

Data augmentation

• When comparing two networks make sure to use the same data augmentation!

Consider data augmentation a part of your network
 design

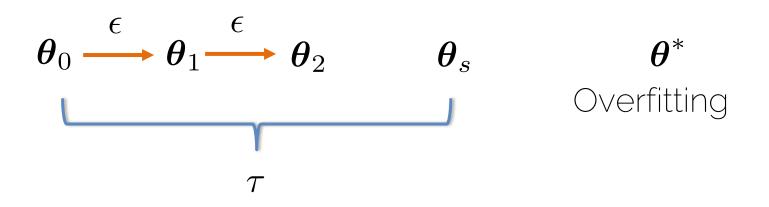
Early stopping



Training time is also a hyperparameter

Early stopping

• Easy form of regularization



Bagging and ensemble methods

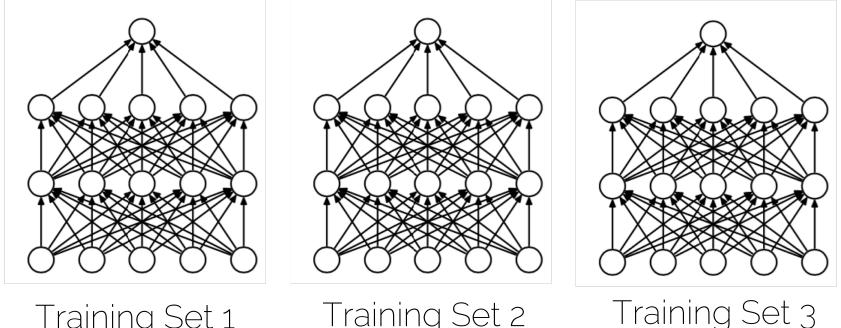
• Train three models and average their results

• Change a different algorithm for optimization or change the objective function

• If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and ensemble methods

Bagging: uses k different datasets



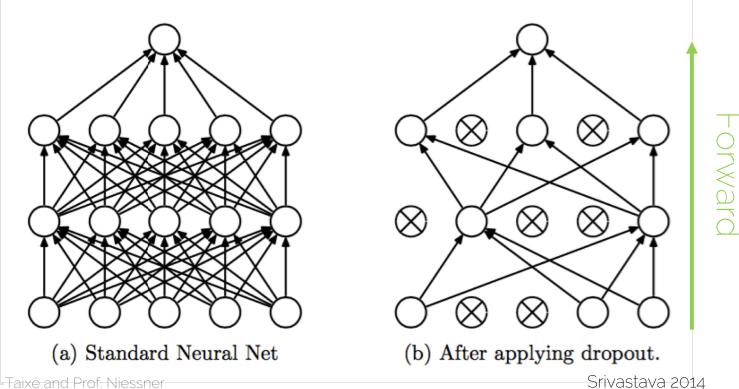
Training Set 1 Prof. Leal-Taixé and Prof. Niessner

Training Set 2

Dropout

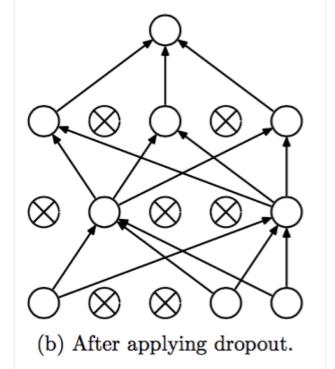
Dropout

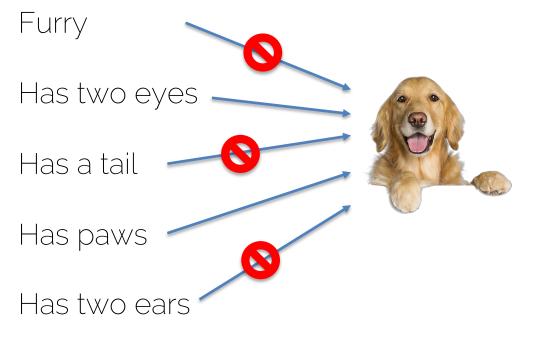
• Disable a random set of neurons (typically 50%)



• Using half the network = half capacity

Redundant representations



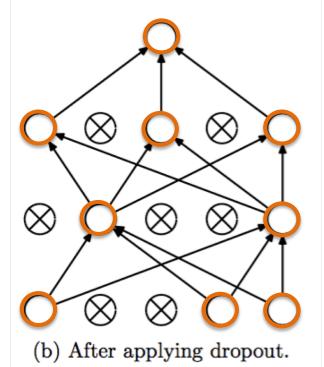


Prof. Leal-Taixé and Prof. Niessner

- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

• Consider it as model ensemble

• Two models in one



Prof. Leal-Taixé and Prof. Niessner

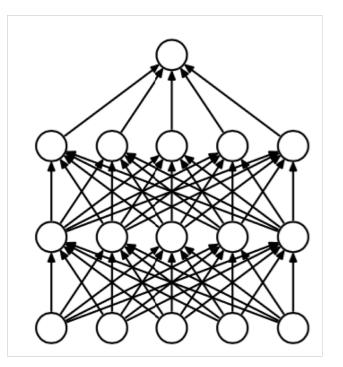
- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

- Consider it as two models in one
 - Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: test time

• All neurons are "turned on" – no dropout

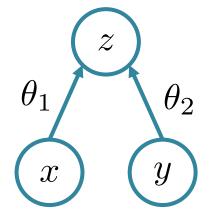


Conditions at train and test time are not the same

Dropout: test time

p = 0.5

• Test:
$$z = \theta_1 x + \theta_2 y$$



Weight scaling inference rule

Train:
$$E[z] = \frac{1}{4}(\theta_1 0 + \theta_2 0 + \theta_1 x + \theta_2 0 + \theta_1 0 + \theta_2 y + \theta_1 0 + \theta_2 y + \theta_1 x + \theta_2 y)$$

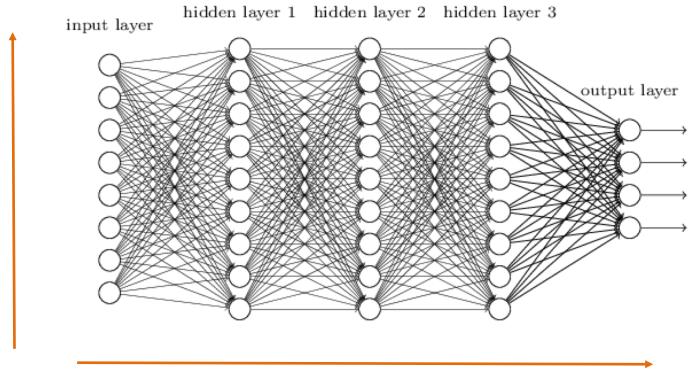
aling rule $= \frac{1}{2}(\theta_1 x + \theta_2 y)$

Dropout: verdict

• Efficient bagging method with parameter sharing

• Use it!

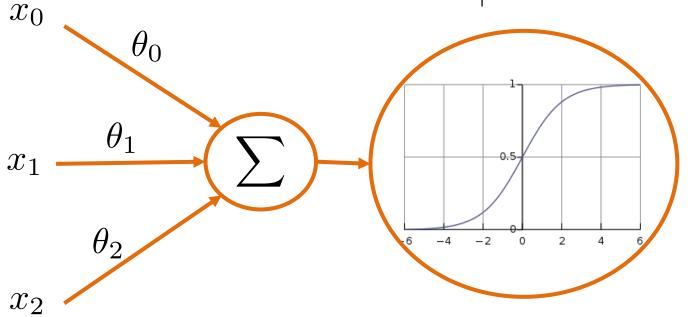
 Dropout reduces the effective capacity of a model → larger models, more training time



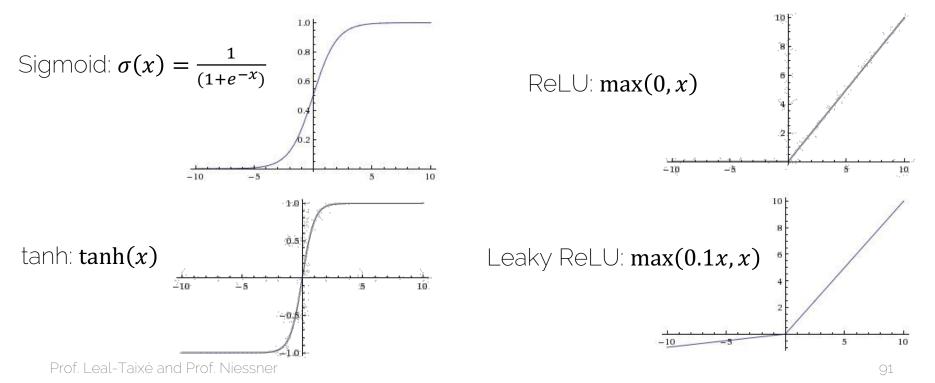
Depth

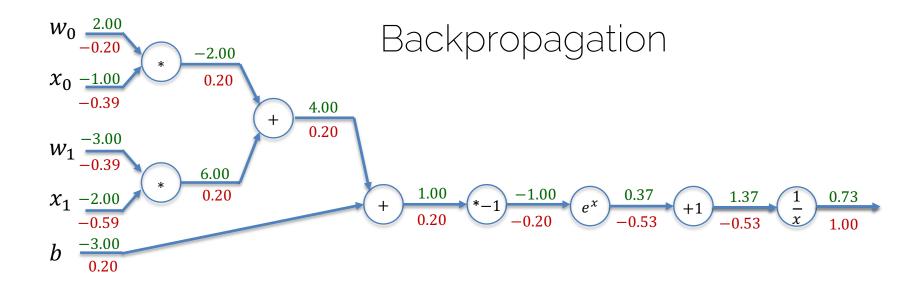
Width

Concept of a 'Neuron'

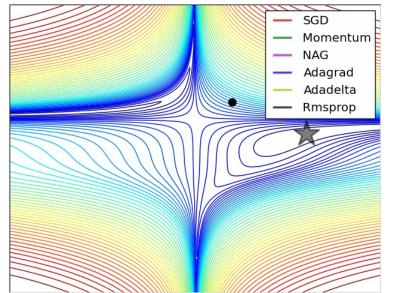


Activation Functions (non-linearities)





SGD Variations (Momentum, etc.)

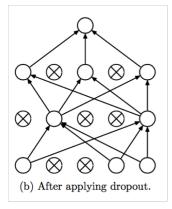


Data Augmentation

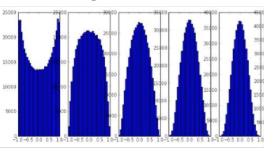
Weight Regularization e.g., L^2 -reg: $R^2(W) = \sum_{i=1}^N w_i^2$

Batch-Norm

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$



Weight Initialization (e.g., Xavier/2)



Why not only more Layers?

- We can not make networks arbitrarily complex
 - Why not just go deeper and get better?

- No structure!!
- It's just brute force!
- Optimization becomes hard
- Performance plateaus / drops!

Administrative Things

Happy holidays!

 Tuesday December 18th: solution to Exercise 2, introduction to exercise 3 and introduction to PyTorch!

• Thursday January 10th: Starting with CNN