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Gradient Descent for Neural Networks
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Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch
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𝑘 now refers to 𝑘-th iteration 

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch 



Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!
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Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel



Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1
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Step will be largest when a sequence of 
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9



RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖
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Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!



RMSProp
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Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients 
-> second momentum

Can increase learning rate!



Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖
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First momentum: 
mean of gradients

Second momentum: 
variance of gradients



Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖
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𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2



Convergence
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Convergence
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Importance of Learning Rate
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Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND 

DERIVATIVE
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Newton’s method
• Approximate our function by a second-order Taylor 

series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative 
(curvature)
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Newton’s method
• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!
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Newton’s method
• Differentiate and equate to zero

Update step

Parameters 
of a network 

(millions)

Number of 
elements in 
the Hessian

Computational 
complexity of 

‘inversion’ per iteration
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Newton’s method
• SGD (green)

• Newton’s method exploits 
the curvature to take a 
more direct route

Image from Wikipedia
18
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Newton’s method

Can you apply Newton’s 
method for linear 

regression? What do you 
get as a result?
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BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS
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Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 − 𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN): 
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is unstable):
2 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector
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Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
– 𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if inequation is not fulfilled increase 𝜆
• Trust region

• “Interpolation” between Gauss-Newton (small 𝜆) and 
Gradient Descent (large 𝜆)

Tikhonov
regularization
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Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each 
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small 

gradient
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Which, what and when?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch 
updates (doesn’t work well for minibatches!!)

24
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This practically never happens for DL
Theoretically, it would be nice though due to fast convergence



General Optimization
• Linear Systems (Ax = b)

– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS <- second order
– Gradient Descent, SGD <- first order

• Others:
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM, 

Primal-Dual, etc.)
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Please Remember!
• Think about your problem and optimization at hand 

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!
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Importance of Learning Rate
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Learning Rate  
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Need high learning rate when far away Need low learning rate when close



Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒⋅𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒 = 1.0

– > Epoch 0: 0.1

– > Epoch 1: 0.05

– > Epoch 2: 0.033

– > Epoch 3: 0.025

...
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Learning Rate Decay
Many options:

• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)
– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate 

• Etc.
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Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How? 

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.
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Learning Rate: Implications

• What if too high?

• What if too low?
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Training
• Given ground dataset with ground lables

– {𝑥𝑖 , 𝑦𝑖}

• For instance 𝑥𝑖-th training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏

– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏
• Gradients from backprop
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Learning
• Learning means generalization to unknown dataset

– (so far no ‘real’ learning)
– I.e., train on known dataset -> test with optimized 

parameters on unknown dataset

• Basically, we hope that based on the train set, the 
optimized parameters will give similar results on 
different data (i.e., test data)
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Learning
• Training set (‘train’):

– Use for training your neural network  

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING
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Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average mini-batch error
– Typically take subset of validation every n iterations
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Learning
• Training graph

- Accuracy - Loss
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(EMA smoothing)



Learning
• Validation graph
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Over- and Underfitting
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Underfitted Appropriate Overfitted

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017 



Over- and Underfitting
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Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html



Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture) 
• Batch size
• …
• Overall: learning setup + optimization = hyerparameter
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Hyperparameter Tuning
• Methods:

– Manual search: most common 
– Grid search (structured, for ‘real’ applications)

Define ranges for all parameters spaces and select 
points (usually pseudo-uniformly distributed). Iterate over 
all possible configurations

– Random search:
Like grid search but one picks points at random in the 
predefined ranges
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Simple Grid Search Example
learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
num_iters = [500, 1000, 1500]
best_val = 0

for learning_rate in learning_rates:
for reg in regularization_strengths:

for iterations in num_iters:
model = train_model(learning_rate, reg., iterations)
validation_accuracy = evaluate(model)
if validation_accuracy > best_val:

best_val = validation_accuracy
best_model = model
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Cross Validation
• Example: k=5
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Figure extracted from cs231n



Cross Validation

Prof. Leal-Taixé and Prof. Niessner 45

• Used when data set is extremely small and/or our 
method of choice has low training times

• Partition data into k subsets, train on k-1 and evaluate 
performance on the remaining subset

• To reduce variability: perform on different partitions 
and average results



Cross Validation
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Results for k=5

Hyperparmeter value

Figure extracted from cs231n



Basic recipe for 
machine learning

47



Basic recipe for machine learning
• Split your data

48

Find your hyperparameters

20%

train testvalidation

20%60%



Basic recipe for machine learning
• Split your data

49

20%

train testvalidation

20%60%

Human level error …... 1%

Training set error   ….... 5%

Val/test set error  ….... 8%

Bias (or underfitting)

Variance 
(overfitting)



Basic recipe for machine learning

50Credits: A. Ng
More on 



Next lecture
• Monday: Deadline Ex1!

• Next Tuesday:
– Discussion solution exercise and presentation exercise 2

• Next lecture on Dec 6th: 
– Training Neural Networks
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See you next week!
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