
Lecture 5 recap

1
Prof. Leal-Taixé and Prof. Niessner

Neural Network

Depth

W
id

th

2
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent for Neural Networks

Prof. Leal-Taixé and Prof. Niessner 3

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤,𝑏𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)

Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner 4

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch

Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!

Prof. Leal-Taixé and Prof. Niessner 5

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 6

Step will be largest when a sequence of
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Prof. Leal-Taixé and Prof. Niessner 7

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!

RMSProp

Prof. Leal-Taixé and Prof. Niessner 8

X-direction
Small gradients

Y-
D

ir
ec

ti
o

n
La

rg
e

gr
ad

ie
n

ts

Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients
-> second momentum

Can increase learning rate!

Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 9

First momentum:
mean of gradients

Second momentum:
variance of gradients

Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 10

𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2

Convergence

11
Prof. Leal-Taixé and Prof. Niessner

Convergence

12
Prof. Leal-Taixé and Prof. Niessner

Importance of Learning Rate

13
Prof. Leal-Taixé and Prof. Niessner

Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND

DERIVATIVE

14
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Approximate our function by a second-order Taylor

series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative
(curvature)

15
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!

16
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Differentiate and equate to zero

Update step

Parameters
of a network

(millions)

Number of
elements in
the Hessian

Computational
complexity of

‘inversion’ per iteration

17
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• SGD (green)

• Newton’s method exploits
the curvature to take a
more direct route

Image from Wikipedia
18

Prof. Leal-Taixé and Prof. Niessner

Newton’s method

Can you apply Newton’s
method for linear

regression? What do you
get as a result?

19
Prof. Leal-Taixé and Prof. Niessner

BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS

20
Prof. Leal-Taixé and Prof. Niessner

Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 − 𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN):
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is unstable):
2 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector

Prof. Leal-Taixé and Prof. Niessner 21

Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– The damping factor 𝜆 is adjusted in each iteration ensuring:
– 𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if inequation is not fulfilled increase 𝜆
• Trust region

• “Interpolation” between Gauss-Newton (small 𝜆) and
Gradient Descent (large 𝜆)

Tikhonov
regularization

Prof. Leal-Taixé and Prof. Niessner 22

Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small

gradient

Prof. Leal-Taixé and Prof. Niessner 23

Which, what and when?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch
updates (doesn’t work well for minibatches!!)

24
Prof. Leal-Taixé and Prof. Niessner

This practically never happens for DL
Theoretically, it would be nice though due to fast convergence

General Optimization
• Linear Systems (Ax = b)

– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS <- second order
– Gradient Descent, SGD <- first order

• Others:
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM,

Primal-Dual, etc.)
Prof. Leal-Taixé and Prof. Niessner 25

Please Remember!
• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!

Prof. Leal-Taixé and Prof. Niessner 26

Importance of Learning Rate

27
Prof. Leal-Taixé and Prof. Niessner

Learning Rate

Prof. Leal-Taixé and Prof. Niessner 28

Need high learning rate when far away Need low learning rate when close

Learning Rate Decay

• 𝛼 =
1

1+𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒⋅𝑒𝑝𝑜𝑐ℎ
⋅ 𝛼0

– E.g., 𝛼0 = 0.1, 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒 = 1.0

– > Epoch 0: 0.1

– > Epoch 1: 0.05

– > Epoch 2: 0.033

– > Epoch 3: 0.025

...
Prof. Leal-Taixé and Prof. Niessner 29

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Learning Rate over Epochs

Learning Rate Decay
Many options:

• Step decay 𝛼 = 𝛼 − 𝑡 ⋅ 𝛼 (only every n steps)
– T is decay rate (often 0.5)

• Exponential decay 𝛼 = 𝑡𝑒𝑝𝑜𝑐ℎ ⋅ 𝛼0
– t is decay rate (t < 1.0)

• 𝛼 =
𝑡

𝑒𝑝𝑜𝑐ℎ
⋅ 𝑎0

– t is decay rate

• Etc.

Prof. Leal-Taixé and Prof. Niessner 30

Training Schedule
Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs
• How?

– Trial and error (the hard way)
– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

Prof. Leal-Taixé and Prof. Niessner 31

Learning Rate: Implications

• What if too high?

• What if too low?

Prof. Leal-Taixé and Prof. Niessner 32

Training
• Given ground dataset with ground lables

– {𝑥𝑖 , 𝑦𝑖}

• For instance 𝑥𝑖-th training image, with label 𝑦𝑖
• Often dim 𝑥 ≫ dim(𝑦) (e.g., for classification)
• 𝑖 is often in the 100-thousands or millions

– Take network 𝑓 and its parameters 𝑤, 𝑏

– Use SGD (or variation) to find optimal parameters 𝑤, 𝑏
• Gradients from backprop

Prof. Leal-Taixé and Prof. Niessner 33

Learning
• Learning means generalization to unknown dataset

– (so far no ‘real’ learning)
– I.e., train on known dataset -> test with optimized

parameters on unknown dataset

• Basically, we hope that based on the train set, the
optimized parameters will give similar results on
different data (i.e., test data)

Prof. Leal-Taixé and Prof. Niessner 34

Learning
• Training set (‘train’):

– Use for training your neural network

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING

Prof. Leal-Taixé and Prof. Niessner 35

Learning
• Typical splits

– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average mini-batch error
– Typically take subset of validation every n iterations

Prof. Leal-Taixé and Prof. Niessner 36

Learning
• Training graph

- Accuracy - Loss

Prof. Leal-Taixé and Prof. Niessner 37

(EMA smoothing)

Learning
• Validation graph

Prof. Leal-Taixé and Prof. Niessner 38

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 39

Underfitted Appropriate Overfitted

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 40

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Hyperparameters
• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture)
• Batch size
• …
• Overall: learning setup + optimization = hyerparameter

Prof. Leal-Taixé and Prof. Niessner 41

Hyperparameter Tuning
• Methods:

– Manual search: most common
– Grid search (structured, for ‘real’ applications)

Define ranges for all parameters spaces and select
points (usually pseudo-uniformly distributed). Iterate over
all possible configurations

– Random search:
Like grid search but one picks points at random in the
predefined ranges

Prof. Leal-Taixé and Prof. Niessner 42

Simple Grid Search Example
learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
num_iters = [500, 1000, 1500]
best_val = 0

for learning_rate in learning_rates:
for reg in regularization_strengths:

for iterations in num_iters:
model = train_model(learning_rate, reg., iterations)
validation_accuracy = evaluate(model)
if validation_accuracy > best_val:

best_val = validation_accuracy
best_model = model

Prof. Leal-Taixé and Prof. Niessner 43

Cross Validation
• Example: k=5

Prof. Leal-Taixé and Prof. Niessner 44

Figure extracted from cs231n

Cross Validation

Prof. Leal-Taixé and Prof. Niessner 45

• Used when data set is extremely small and/or our
method of choice has low training times

• Partition data into k subsets, train on k-1 and evaluate
performance on the remaining subset

• To reduce variability: perform on different partitions
and average results

Cross Validation

Prof. Leal-Taixé and Prof. Niessner 46

Results for k=5

Hyperparmeter value

Figure extracted from cs231n

Basic recipe for
machine learning

47

Basic recipe for machine learning
• Split your data

48

Find your hyperparameters

20%

train testvalidation

20%60%

Basic recipe for machine learning
• Split your data

49

20%

train testvalidation

20%60%

Human level error …... 1%

Training set error ….... 5%

Val/test set error ….... 8%

Bias (or underfitting)

Variance
(overfitting)

Basic recipe for machine learning

50Credits: A. Ng
More on

Next lecture
• Monday: Deadline Ex1!

• Next Tuesday:
– Discussion solution exercise and presentation exercise 2

• Next lecture on Dec 6th:
– Training Neural Networks

51
Prof. Leal-Taixé and Prof. Niessner

See you next week!

Prof. Leal-Taixé and Prof. Niessner 52

