Tा

$$
\text { Lecture } 7 \text { Recap }
$$

Naïve Losses: L2 vs L1

- L2 Loss:
$-L^{2}=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
- Sum of squared differences (SSD)
- Prone to outliers
- Compute-efficient (optimization)
- Optimum is the mean
- L1 Loss:
$-L^{1}=\sum_{i=1}^{n}\left|y_{i}-f\left(x_{i}\right)\right|$
- Sum of absolute differences
- Robust
- Costly to compute
- Optimum is the median

Binary Classification: Sigmoid

Softmax Formulation

- What if we have multiple classes?

Scores

Example: Hinge vs Cross-Entropy

Hinge Loss: $L_{i}=\sum_{k \neq y_{i}} \max \left(0, s_{k}-s_{y_{i}}+1\right)$
Cross Entropy : $L_{i}=-\log \left(\frac{e^{s y_{i}}}{\Sigma_{k} e^{s_{k}}}\right)$

Given the following scores for \boldsymbol{x}
Model $1 \quad s=[5,-3,2]$

> Hinge loss:
$\max (0,-3-5+1)+$
$\max (0,2-5+1)=0$
$\max (0,10-5+1)+$
$\max (0,10-5+1)=12$

$$
\begin{array}{clll}
s=[5,-20,-20] & & \max (0,-20-5+1)+ & -\ln \left(\frac{e^{5}}{e^{5}+e^{-20}}\right. \\
y_{i}=0 & & \max (0,-20-5+1)=0 & =2 * 10^{-11}
\end{array}
$$

Model 2
Model 3

Cross Entropy loss:

- Cross Entropy *always* wants to improve! (loss never o)
- Hinge Loss saturates.

Sigmoid Activation

$\frac{\partial L}{\partial s}=\frac{\partial \sigma}{\partial s} \frac{\partial L}{\partial \sigma}$

$\frac{\partial L}{\partial \sigma}$

TanH Activation

[LeCun et al. 1991] Improving Generalization Performance in Character Recognition

Rectified Linear Units (ReLU)

X Dead ReLU

What happens if a ReLU outputs zero?

Fast convergence
[Krizhevsky et al. NeurlPS 2012] ImageNet Classification with Deep Convolutional Neural Networks

Quick Guide

- Sigmoid is not really used.
- ReLU is the standard choice.
- Second choice are the variants of ReLU or Maxout.
- Recurrent nets will require TanH or similar.

Initialization is Extremely Important

- Optimum

$$
x^{*}=\arg \min f(x)
$$

Xavier Initialization

- How to ensure the variance of the output is the same as the input?

$$
\begin{aligned}
& \underbrace{(n \operatorname{Var}(w)}_{=1} \operatorname{Var}(x)) \\
& \operatorname{Var}(w)=\frac{1}{n}
\end{aligned}
$$

ReLU Kills Half of the Data

$\operatorname{Var}(w)=\frac{2}{n}$

Lecture 8

Tा

Data Augmentation

Data Augmentation

- A classifier has to be invariant to a wide variety of transformations

Data Augmentation

- A classifier has to be invariant to a wide variety of transformations
- Helping the classifier: synthesize data simulating plausible transformations

Data Augmentation

a. No augmentation (= 1 image)


```
224\times224
\longrightarrow
```


b. Flip augmentation (= 2 images)

c. Crop+Flip augmentation (= 10 images)

+ flips

Data Augmentation: Brightness

- Random brightness and contrast changes

Data Augmentation: Random Crops

- Training: random crops
- Pick a random L in [256,480]
- Resize training image, short side L
- Randomly sample crops of 224×224
- Testing: fixed set of crops
- Resize image at N scales

- 10 fixed crops of 224×224 : (4 corners +1 center) $\times 2$ flips

Data Augmentation

- When comparing two networks make sure to use the same data augmentation!
- Consider data augmentation a part of your network design

Advanced Regularization

Weight Decay

- L2 regularization

$$
\Theta_{k+1}=\Theta_{k}-\epsilon \nabla_{\Theta}\left(\Theta_{k}, x, y\right)-\lambda \theta_{k}
$$

Learning rate

Gradient Gradient of L2-regularization

- Penalizes large weights
- Improves generalization

Early Stopping

Early Stopping

- Easy form of regularization

Bagging and Ensemble Methods

- Train multiple models and average their results
- E.g., use a different algorithm for optimization or change the objective function / loss function.
- If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and Ensemble Methods

- Bagging: uses k different datasets

Dropout

Dropout

- Disable a random set of neurons (typically 50\%)

(a) Standard Neural Net

(b) After applying dropout.

Dropout: Intuition

- Using half the network = half capacity

(b) After applying dropout.

Dropout: Intuition

- Using half the network = half capacity
- Redundant representations
- Base your scores on more features
- Consider it as a model ensemble

Dropout: Intuition

- Two models in one

- Model 1

Q Model2

(b) After applying dropout.

Dropout: Intuition

- Using half the network = half capacity
- Redundant representations
- Base your scores on more features
- Consider it as two models in one
- Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

> Reducing co-adaptation between neurons

Dropout: Test Time

- All neurons are "turned on" - no dropout

Conditions at train and test time are not the same

Dropout: Test Time

- Test:
- Train:

$$
z=\left(\theta_{1} x_{1}+\theta_{2} x_{2}\right) \cdot p \quad p=0.5
$$

$$
\begin{aligned}
E[z]= & \frac{1}{4}\left(\theta_{1} 0+\theta_{2} 0\right. \\
& +\theta_{1} x_{1}+\theta_{2} 0 \\
& +\theta_{1} 0+\theta_{2} x_{2} \\
& \left.+\theta_{1} x_{1}+\theta_{2} x_{2}\right) \\
= & \left.\frac{1}{2} \theta_{1} x_{1}+\theta_{2} x_{2}\right)
\end{aligned}
$$

Dropout: Verdict

- Efficient bagging method with parameter sharing
- Try it!
- Dropout reduces the effective capacity of a model \rightarrow larger models, more training time

TII

Batch Normalization

Our Goal

- All we want is that our activations do not die out

x VM1 1 I

Batch Normalization

- Wish: Unit Gaussian activations (in our example)
- Solution: let's do it

Mean of your mini-batch examples over feature k

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

Batch Normalization

- In each dimension of the features, you have a unit gaussian (in our example)

Mean of your mini-batch examples over feature k

$$
\widehat{x}^{(k)}=\frac{\boldsymbol{x}^{(k)}-E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

Unit gaussian

Batch Normalization

- In each dimension of the features, you have a unit gaussian (in our example)
- For NN in general \rightarrow BN normalizes the mean and variance of the inputs to your activation functions

BN Layer

- A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions

Batch Normalization

- 1. Normalize

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

Differentiable function so we can backprop through it...

- 2. Allow the network to change the range

$$
\boldsymbol{y}^{(k)}=\gamma^{(k)} \widehat{\boldsymbol{x}}^{(k)}+\beta^{(k)} \longleftarrow \begin{aligned}
& \text { These parameters will be } \\
& \text { optimized during backprop }
\end{aligned}
$$

Batch Normalization

- 1. Normalize

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

- 2. Allow the network to change the range

$$
\boldsymbol{y}^{(k)}=\gamma^{(k)} \widehat{\boldsymbol{x}}^{(k)}+\beta^{(k)}
$$

Batch Normalization

- Ok to treat dimensions separately? Shown empirically that even if features are not correlated, convergence is still faster with this method
- You can set all biases of the layers before BN to zero, because they will be cancelled out by BN anyway

BN: Train vs Test

- Train time: mean and variance is taken over the minibatch

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-\mathbb{E}\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

- Test-time: what happens if we can just process one image at a time?
- No chance to compute a meaningful mean and variance

BN: Train vs Test

Training: Compute mean and variance from mini-batch 1,2,3 ...

Testing: Compute mean and variance by running an exponentially weighted averaged across training minibatches. Use them as $\sigma_{\text {test }}^{2}$ and $\mu_{\text {test }}$.

$$
\begin{aligned}
& \text { Var }_{\text {running }}=\beta_{m} * \text { Var }_{\text {running }}+\left(1-\beta_{m}\right) * \text { Var }_{\text {minibatch }} \\
& \quad \mu_{\text {running }}=\beta_{m} * \mu_{\text {running }}+\left(1-\beta_{m}\right) * \mu_{\text {minibatch }}
\end{aligned}
$$

β_{m} : momentum (hyperparameter)

BN: What do you get?

- Very deep nets are much easier to train \rightarrow more stable gradients
- A much larger range of hyperparameters works similarly when using BN

BN: A Milestone

BN: Drawbacks

Other Normalizations

Image size

Other Normalizations

Number of elements in the batch
Number of channels

Tा

What We Know

What do we know so far?

What do we know so far?
Concept of a 'Neuron'

What do we know so far?

Activation Functions (non-linearities)

- Sigmoid: $\sigma(x)=\frac{1}{\left(1+e^{-x}\right)}$
- ReLU: $\max (0, x)$

- TanH: $\tanh (x)$

- Leaky ReLU: $\max (0.1 x, x)$

What do we know so far?

Backpropagation

What do we know so far?

SGD Variations (Momentum, etc.)

What do we know so far?

Data Augmentation
a. No augmentation (= 1 image)

b. Flip augmentation ($=2$ images)

$$
\begin{gathered}
\text { Weight Regularization } \\
\text { e.g., } L^{2} \text {-reg: } \quad R^{2}(\boldsymbol{W})=\sum_{i=1}^{N} w_{i}^{2}
\end{gathered}
$$

Batch-Norm

$$
\widehat{\boldsymbol{x}}^{(k)}=\frac{\boldsymbol{x}^{(k)}-E\left[\boldsymbol{x}^{(k)}\right]}{\sqrt{\operatorname{Var}\left[\boldsymbol{x}^{(k)}\right]}}
$$

Dropout

(b) After applying dropout.

Why not simply more Layers?

- We cannot make networks arbitrarily complex
- Why not just go deeper and get better?
- No structure!!
- It is just brute force!
- Optimization becomes hard
- Performance plateaus / drops!

Tा

See you next week!

References

- Goodfellow et al. "Deep Learning" (2016),
- Chapter 6: Deep Feedforward Networks
- Bishop "Pattern Recognition and Machine Learning" (2006),
- Chapter 5.5: Regularization in Network Nets
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/neural-networks-3/

