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Naïve Losses: L2 vs L1
• L2 Loss: 

– 𝐿! = ∑"#$% 𝑦" − 𝑓 𝑥"
!

– Sum of squared 
differences (SSD)

– Prone to outliers
– Compute-efficient 

(optimization)
– Optimum is the mean
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• L1 Loss:
– 𝐿$ = ∑"#$% |𝑦" − 𝑓(𝑥")|
– Sum of absolute 

differences
– Robust
– Costly to compute

– Optimum is the median 



Binary Classification: Sigmoid

0

Can be 
interpreted as 
a probability

1
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𝜎 𝒙, 𝜽 =
1

1 + 𝑒!∑#!$!

𝑝(𝑦 = 1|𝑥, 𝜽)

𝜎 𝑠 =
1

1 + 𝑒!"

Σ𝜃#

𝜃$

𝜃%

𝑠

𝑥%

𝑥#

𝑥$



Softmax Formulation

• What if we have multiple classes?
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Softmax

𝑝(𝑦 = 1|𝒙, 𝜽) =
𝑒𝒔𝟏

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑝(𝑦 = 3|𝒙, 𝜽) =
𝑒𝒔𝟑

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑥%

𝑥#

𝑥$

Σ

Σ

𝑝(𝑦 = 2|𝒙, 𝜽) =
𝑒𝒔𝟐

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑Σ

𝑠1

𝑠2

𝑠3

Scores 
for each class

Probabilities 
for each class



− ln *!
*!+*"#$+*"#$

= 2 ∗ 10!##

Example: Hinge vs Cross-Entropy

Given the following scores for 𝒙, :

𝑠 = [5, −3, 2]

𝑠 = [5, 10, 10]

𝑠 = [5, −20, −20]

𝑦, = 0
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Model 1

Model 2

Model 3

Hinge loss: 

max(0, −3 − 5 + 1) +
max 0, 2 − 5 + 1 =0
max(0, 10 − 5 + 1) +
max 0, 10 − 5 + 1 =12
max(0, −20 − 5 + 1) +
max 0, −20 − 5 + 1 =0

Cross Entropy loss: 

− ln *!
*!+*"%+*# = 0.05

− ln *!
*!+*&$+*&$ = 5.70

− Cross Entropy *always* wants to improve! (loss never 0)
− Hinge Loss saturates.

Hinge Loss: 𝐿@ = ∑ABC%max(0, 𝑠A − 𝑠C% + 1)

Cross Entropy : 𝐿@ = − log( D&'%
∑( D

&(
)



Sigmoid Activation
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Saturated neurons kill 
the gradient flow

𝜎 𝑠 =
1

1 + 𝑒!"
Forward

𝜕𝐿
𝜕𝑤 =

𝜕𝑠
𝜕𝑤

𝜕𝐿
𝜕𝑠

𝜕𝐿
𝜕𝑠 =

𝜕𝜎
𝜕𝑠
𝜕𝐿
𝜕𝜎

𝜕𝜎
𝜕𝑠

𝜕𝐿
𝜕𝜎



TanH Activation

Zero-
centered

Still saturates
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[LeCun et al. 1991] Improving Generalization Performance in Character Recognition



Rectified Linear Units (ReLU)

Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU
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[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks



Quick Guide

• Sigmoid is not really used.

• ReLU is the standard choice. 

• Second choice are the variants of ReLU or Maxout.

• Recurrent nets will require TanH or similar.
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Initialization is Extremely Important

• Optimum
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Not guaranteed to 
reach the optimum

𝑥∗ = argmin 𝑓(𝑥)

Initialization



Xavier Initialization

• How to ensure the variance of the output is the same 
as the input?
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𝑛𝑉𝑎𝑟(𝑤 𝑉𝑎𝑟 𝑥 )

= 1

𝑉𝑎𝑟 𝑤 =
1
𝑛



ReLU Kills Half of the Data
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It makes a huge difference!

[He et al., ICCV’15] He Initialization

𝑉𝑎𝑟 𝑤 =
2
𝑛



Lecture 8

13I2DL: Prof. Niessner, Prof. Leal-Taixé



Data Augmentation
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Data Augmentation

• A classifier has to be invariant to a wide variety of 
transformations

16I2DL: Prof. Niessner, Prof. Leal-Taixé



Pose                     Appearance                   Illumination
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Data Augmentation

• A classifier has to be invariant to a wide variety of 
transformations

• Helping the classifier: synthesize data simulating 
plausible transformations
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Data Augmentation
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Data Augmentation: Brightness

• Random brightness and contrast changes
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Data Augmentation: Random Crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L

– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales

– 10 fixed crops of 224x224: (4 corners + 1 center ) × 2 flips

21I2DL: Prof. Niessner, Prof. Leal-Taixé [Krizhevsky et al., NIPS’12] ImageNet



Data Augmentation

• When comparing two networks make sure to use the 
same data augmentation!

• Consider data augmentation a part of your network 
design
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Advanced 
Regularization
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Weight Decay
• L2 regularization

• Penalizes large weights
• Improves generalization
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Learning rate Gradient

Θ&'$ = Θ& − 𝜖𝛻( Θ& , 𝑥, 𝑦 − 𝜆𝜃&

Θ 0 Θ/2 Θ/2

Gradient of L2-regularization



Early Stopping
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Overfitting



Early Stopping

• Easy form of regularization
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Θ% Θ# Θ$ Θ- Θ∗
𝜖 𝜖

𝜏

… …

Overfitting



Bagging and Ensemble Methods 

• Train multiple models and average their results

• E.g., use a different algorithm for optimization or 
change the objective function / loss function.

• If errors are uncorrelated, the expected combined 
error will decrease linearly with the ensemble size
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Bagging and Ensemble Methods 

• Bagging: uses k different datasets
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Training Set 1 Training Set 2 Training Set 3

Image Source: [Srivastava et al., JMLR’14] Dropout



Dropout
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Dropout

• Disable a random set of neurons (typically 50%)
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F
o

rw
ard



Dropout: Intuition

• Using half the network = half capacity
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Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant 
representations

[Srivastava et al., JMLR’14] Dropout



Dropout: Intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as a model ensemble
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Dropout: Intuition

• Two models in one
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Model 1

Model 2

[Srivastava et al., JMLR’14] Dropout



Dropout: Intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different 

set of data (mini-batch) and with SHARED parameters
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Reducing co-adaptation between neurons

[Srivastava et al., JMLR’14] Dropout



Dropout: Test Time

• All neurons are “turned on” – no dropout
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Conditions at train and test 
time are not the same



Dropout: Test Time

• Test:

• Train:
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Dropout
probability
𝑝 = 0.5

Weight scaling 
inference rule

𝑧 = (𝜃Q𝑥Q + 𝜃R𝑥R) 5 𝑝

𝐸 𝑧 =
1
4
(𝜃Q0 + 𝜃R0

+ 𝜃Q𝑥Q + 𝜃R0
+ 𝜃Q0 + 𝜃R𝑥R
+ 𝜃Q𝑥Q + 𝜃R𝑥R)

=
1
2 (𝜃Q𝑥Q + 𝜃R𝑥R)

𝑥$𝑥#

𝜃$

𝑧

𝜃#

[Srivastava et al., JMLR’14] Dropout



Dropout: Verdict

• Efficient bagging method with parameter sharing

• Try it!

• Dropout reduces the effective capacity of a model à
larger models, more training time
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Batch Normalization
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Our Goal

• All we want is that our activations do not die out
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Batch Normalization

• Wish: Unit Gaussian activations (in our example)
• Solution: let’s do it
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D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Mean of your mini-batch 
examples over feature k

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /

[Ioffe and Szegedy, PMLR’15] Batch Normalization

feature 1   …      feature k … 



Batch Normalization

• In each dimension of the features, you have a unit 
gaussian (in our example)
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Mean of your mini-batch 
examples over feature k

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /

feature 1   …      feature k … 

D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Unit gaussian



Batch Normalization

• In each dimension of the features, you have a unit 
gaussian (in our example)

• For NN in general à BN normalizes the mean and 
variance of the inputs to your activation functions
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BN Layer

• A layer to be applied after Fully 
Connected (or Convolutional) layers and 
before non-linear activation functions
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Batch Normalization

• 1. Normalize

• 2. Allow the network to change the range
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These parameters will be 
optimized during backprop

Differentiable function so we 
can backprop through it….

7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

𝒚 & = 𝛾 & 7𝒙(&) + 𝛽 &

[Ioffe and Szegedy, PMLR’15] Batch Normalization



Batch Normalization

• 1. Normalize

• 2. Allow the network to change the 
range
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backprop

The network can
learn to undo the 

normalization

𝛾 / = 𝑉𝑎𝑟 𝒙 /

𝛽 / = 𝐸 𝒙 /

[Ioffe and Szegedy, PMLR’15] Batch Normalization

7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

𝒚 & = 𝛾 & 7𝒙(&) + 𝛽 &



Batch Normalization

• Ok to treat dimensions separately? 
Shown empirically that even if features are not 
correlated, convergence is still faster with this 
method

• You can set all biases of the layers before BN to zero, 
because they will be cancelled out by BN anyway
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BN: Train vs Test

• Train time: mean and variance is taken over the mini-
batch

• Test-time: what happens if we can just process one 
image at a time?
– No chance to compute a meaningful mean and variance
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7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

[Ioffe and Szegedy, PMLR’15] Batch Normalization



BN: Train vs Test
Training: Compute mean and variance from mini-batch 
1,2,3 …

Testing: Compute mean and variance by running an 
exponentially weighted averaged across training mini-
batches. Use them as        and        .   
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𝜇0*"0𝜎0*"0$

[Ioffe and Szegedy, PMLR’15] Batch Normalization

𝑉𝑎𝑟1233,34 = 𝛽5 ∗ 𝑉𝑎𝑟1233,34 + 1 − 𝛽5 ∗ 𝑉𝑎𝑟5,3,67089
𝜇1233,34 = 𝛽5 ∗ 𝜇1233,34 + (1 − 𝛽5) ∗ 𝜇5,3,67089

𝛽5 : momentum (hyperparameter)



BN: What do you get?

• Very deep nets are much easier to train à more 
stable gradients

• A much larger range of hyperparameters works 
similarly when using BN
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BN: A Milestone
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Batch Normalization ⎯ a Milestone

[Wu and He, ECCV’18] Group Normalization



BN: Drawbacks
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Batch: also source of drawbacks

• Small batch

• Varying batch

val error

[Wu and He, ECCV’18] Group Normalization



Other Normalizations
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Our Method: Group Normalization

• GN is batch-independent

• Small batch

• Varying batch

val error

[Wu and He, ECCV’18] Group Normalization



Other Normalizations
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4 Wu and He
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Image size

Number of channels

Number of elements in the batch

[Wu and He, ECCV’18] Group Normalization



What We Know
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What do we know so far?
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W
id
th

Depth



What do we know so far?

56I2DL: Prof. Niessner, Prof. Leal-Taixé

Concept of a ‘Neuron’

𝜎 𝑠 =
1

1 + 𝑒!"

Σ𝜃#

𝜃$

𝜃%

𝑠

𝑥%

𝑥#

𝑥$



What do we know so far?

57I2DL: Prof. Niessner, Prof. Leal-Taixé

Activation Functions (non-linearities)

• Sigmoid: 𝜎 𝑥 = #
(#+*"')

• TanH: tanh 𝑥

• ReLU: max 0, 𝑥

• Leaky ReLU: max 0.1𝑥, 𝑥



What do we know so far?
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𝑤%

𝑥%

𝑤#

𝑥#

𝑏

*−1+ 1
𝑥

𝑒!

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59

Backpropagation



What do we know so far?
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SGD Variations (Momentum, etc.)



What do we know so far?
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Dropout

Batch-Norm

Weight Regularization

Data Augmentation

Weight Initialization
(e.g., Xavier/2)

e.g., 𝐿$-reg: 𝑅$ 𝑾 = ∑,<#= 𝑤,$

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /



Why not simply more Layers?

• We cannot make networks arbitrarily complex

• Why not just go deeper and get better?
– No structure!!
– It is just brute force!

– Optimization becomes hard
– Performance plateaus / drops!
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See you next week!
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