
Lecture 7 Recap

1I2DL: Prof. Niessner, Prof. Leal-Taixé

Naïve Losses: L2 vs L1
• L2 Loss:

– 𝐿! = ∑"#$% 𝑦" − 𝑓 𝑥"
!

– Sum of squared
differences (SSD)

– Prone to outliers
– Compute-efficient

(optimization)
– Optimum is the mean

I2DL: Prof. Niessner, Prof. Leal-Taixé 2

• L1 Loss:
– 𝐿$ = ∑"#$% |𝑦" − 𝑓(𝑥")|
– Sum of absolute

differences
– Robust
– Costly to compute

– Optimum is the median

Binary Classification: Sigmoid

0

Can be
interpreted as
a probability

1

I2DL: Prof. Niessner, Prof. Leal-Taixé 3

𝜎 𝒙, 𝜽 =
1

1 + 𝑒!∑#!$!

𝑝(𝑦 = 1|𝑥, 𝜽)

𝜎 𝑠 =
1

1 + 𝑒!"

Σ𝜃#

𝜃$

𝜃%

𝑠

𝑥%

𝑥#

𝑥$

Softmax Formulation

• What if we have multiple classes?

4I2DL: Prof. Niessner, Prof. Leal-Taixé

Softmax

𝑝(𝑦 = 1|𝒙, 𝜽) =
𝑒𝒔𝟏

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑝(𝑦 = 3|𝒙, 𝜽) =
𝑒𝒔𝟑

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑

𝑥%

𝑥#

𝑥$

Σ

Σ

𝑝(𝑦 = 2|𝒙, 𝜽) =
𝑒𝒔𝟐

𝑒𝒔𝟏 + 𝑒𝒔𝟐 + 𝑒𝒔𝟑Σ

𝑠1

𝑠2

𝑠3

Scores
for each class

Probabilities
for each class

− ln *!
!+"#$+*"#$

= 2 ∗ 10!##

Example: Hinge vs Cross-Entropy

Given the following scores for 𝒙, :

𝑠 = [5, −3, 2]

𝑠 = [5, 10, 10]

𝑠 = [5, −20, −20]

𝑦, = 0

I2DL: Prof. Niessner, Prof. Leal-Taixé 5

Model 1

Model 2

Model 3

Hinge loss:

max(0, −3 − 5 + 1) +
max 0, 2 − 5 + 1 =0
max(0, 10 − 5 + 1) +
max 0, 10 − 5 + 1 =12
max(0, −20 − 5 + 1) +
max 0, −20 − 5 + 1 =0

Cross Entropy loss:

− ln *!
!+"%+*# = 0.05

− ln *!
!+&$+*&$ = 5.70

− Cross Entropy *always* wants to improve! (loss never 0)
− Hinge Loss saturates.

Hinge Loss: 𝐿@ = ∑ABC%max(0, 𝑠A − 𝑠C% + 1)

Cross Entropy : 𝐿@ = − log(D&'%
∑(D

&(
)

Sigmoid Activation

I2DL: Prof. Niessner, Prof. Leal-Taixé 6

Saturated neurons kill
the gradient flow

𝜎 𝑠 =
1

1 + 𝑒!"
Forward

𝜕𝐿
𝜕𝑤 =

𝜕𝑠
𝜕𝑤

𝜕𝐿
𝜕𝑠

𝜕𝐿
𝜕𝑠 =

𝜕𝜎
𝜕𝑠
𝜕𝐿
𝜕𝜎

𝜕𝜎
𝜕𝑠

𝜕𝐿
𝜕𝜎

TanH Activation

Zero-
centered

Still saturates

I2DL: Prof. Niessner, Prof. Leal-Taixé 7
[LeCun et al. 1991] Improving Generalization Performance in Character Recognition

Rectified Linear Units (ReLU)

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

I2DL: Prof. Niessner, Prof. Leal-Taixé 8

[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks

Quick Guide

• Sigmoid is not really used.

• ReLU is the standard choice.

• Second choice are the variants of ReLU or Maxout.

• Recurrent nets will require TanH or similar.

9I2DL: Prof. Niessner, Prof. Leal-Taixé

Initialization is Extremely Important

• Optimum

10I2DL: Prof. Niessner, Prof. Leal-Taixé

Not guaranteed to
reach the optimum

𝑥∗ = argmin 𝑓(𝑥)

Initialization

Xavier Initialization

• How to ensure the variance of the output is the same
as the input?

11I2DL: Prof. Niessner, Prof. Leal-Taixé

𝑛𝑉𝑎𝑟(𝑤 𝑉𝑎𝑟 𝑥)

= 1

𝑉𝑎𝑟 𝑤 =
1
𝑛

ReLU Kills Half of the Data

12I2DL: Prof. Niessner, Prof. Leal-Taixé

It makes a huge difference!

[He et al., ICCV’15] He Initialization

𝑉𝑎𝑟 𝑤 =
2
𝑛

Lecture 8

13I2DL: Prof. Niessner, Prof. Leal-Taixé

Data Augmentation

14I2DL: Prof. Niessner, Prof. Leal-Taixé

Data Augmentation

• A classifier has to be invariant to a wide variety of
transformations

16I2DL: Prof. Niessner, Prof. Leal-Taixé

Pose Appearance Illumination
17I2DL: Prof. Niessner, Prof. Leal-Taixé

Data Augmentation

• A classifier has to be invariant to a wide variety of
transformations

• Helping the classifier: synthesize data simulating
plausible transformations

18I2DL: Prof. Niessner, Prof. Leal-Taixé

Data Augmentation

19I2DL: Prof. Niessner, Prof. Leal-Taixé [Krizhevsky et al., NIPS’12] ImageNet

Data Augmentation: Brightness

• Random brightness and contrast changes

20I2DL: Prof. Niessner, Prof. Leal-Taixé [Krizhevsky et al., NIPS’12] ImageNet

Data Augmentation: Random Crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L

– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales

– 10 fixed crops of 224x224: (4 corners + 1 center) × 2 flips

21I2DL: Prof. Niessner, Prof. Leal-Taixé [Krizhevsky et al., NIPS’12] ImageNet

Data Augmentation

• When comparing two networks make sure to use the
same data augmentation!

• Consider data augmentation a part of your network
design

22I2DL: Prof. Niessner, Prof. Leal-Taixé

Advanced
Regularization

23I2DL: Prof. Niessner, Prof. Leal-Taixé

Weight Decay
• L2 regularization

• Penalizes large weights
• Improves generalization

24I2DL: Prof. Niessner, Prof. Leal-Taixé

Learning rate Gradient

Θ&'$ = Θ& − 𝜖𝛻(Θ& , 𝑥, 𝑦 − 𝜆𝜃&

Θ 0 Θ/2 Θ/2

Gradient of L2-regularization

Early Stopping

25I2DL: Prof. Niessner, Prof. Leal-Taixé

Overfitting

Early Stopping

• Easy form of regularization

26I2DL: Prof. Niessner, Prof. Leal-Taixé

Θ% Θ# Θ$ Θ- Θ∗
𝜖 𝜖

𝜏

… …

Overfitting

Bagging and Ensemble Methods

• Train multiple models and average their results

• E.g., use a different algorithm for optimization or
change the objective function / loss function.

• If errors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size

27I2DL: Prof. Niessner, Prof. Leal-Taixé

Bagging and Ensemble Methods

• Bagging: uses k different datasets

28I2DL: Prof. Niessner, Prof. Leal-Taixé

Training Set 1 Training Set 2 Training Set 3

Image Source: [Srivastava et al., JMLR’14] Dropout

Dropout

29I2DL: Prof. Niessner, Prof. Leal-Taixé

Dropout

• Disable a random set of neurons (typically 50%)

30I2DL: Prof. Niessner, Prof. Leal-Taixé [Srivastava et al., JMLR’14] Dropout

F
o

rw
ard

Dropout: Intuition

• Using half the network = half capacity

31I2DL: Prof. Niessner, Prof. Leal-Taixé

Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant
representations

[Srivastava et al., JMLR’14] Dropout

Dropout: Intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as a model ensemble

32I2DL: Prof. Niessner, Prof. Leal-Taixé [Srivastava et al., JMLR’14] Dropout

Dropout: Intuition

• Two models in one

33I2DL: Prof. Niessner, Prof. Leal-Taixé

Model 1

Model 2

[Srivastava et al., JMLR’14] Dropout

Dropout: Intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different

set of data (mini-batch) and with SHARED parameters

34I2DL: Prof. Niessner, Prof. Leal-Taixé

Reducing co-adaptation between neurons

[Srivastava et al., JMLR’14] Dropout

Dropout: Test Time

• All neurons are “turned on” – no dropout

35I2DL: Prof. Niessner, Prof. Leal-Taixé [Srivastava et al., JMLR’14] Dropout

Conditions at train and test
time are not the same

Dropout: Test Time

• Test:

• Train:

36I2DL: Prof. Niessner, Prof. Leal-Taixé

Dropout
probability
𝑝 = 0.5

Weight scaling
inference rule

𝑧 = (𝜃Q𝑥Q + 𝜃R𝑥R) 5 𝑝

𝐸 𝑧 =
1
4
(𝜃Q0 + 𝜃R0

+ 𝜃Q𝑥Q + 𝜃R0
+ 𝜃Q0 + 𝜃R𝑥R
+ 𝜃Q𝑥Q + 𝜃R𝑥R)

=
1
2 (𝜃Q𝑥Q + 𝜃R𝑥R)

𝑥$𝑥#

𝜃$

𝑧

𝜃#

[Srivastava et al., JMLR’14] Dropout

Dropout: Verdict

• Efficient bagging method with parameter sharing

• Try it!

• Dropout reduces the effective capacity of a model à
larger models, more training time

37I2DL: Prof. Niessner, Prof. Leal-Taixé [Srivastava et al., JMLR’14] Dropout

Batch Normalization

38I2DL: Prof. Niessner, Prof. Leal-Taixé

Our Goal

• All we want is that our activations do not die out

I2DL: Prof. Niessner, Prof. Leal-Taixé 39

Batch Normalization

• Wish: Unit Gaussian activations (in our example)
• Solution: let’s do it

40I2DL: Prof. Niessner, Prof. Leal-Taixé

D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Mean of your mini-batch
examples over feature k

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /

[Ioffe and Szegedy, PMLR’15] Batch Normalization

feature 1 … feature k …

Batch Normalization

• In each dimension of the features, you have a unit
gaussian (in our example)

41I2DL: Prof. Niessner, Prof. Leal-Taixé [Ioffe and Szegedy, PMLR’15] Batch Normalization

Mean of your mini-batch
examples over feature k

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /

feature 1 … feature k …

D = num of features

N
 =

 m
in

i-
b

at
ch

 s
iz

e

Unit gaussian

Batch Normalization

• In each dimension of the features, you have a unit
gaussian (in our example)

• For NN in general à BN normalizes the mean and
variance of the inputs to your activation functions

42I2DL: Prof. Niessner, Prof. Leal-Taixé [Ioffe and Szegedy, PMLR’15] Batch Normalization

BN Layer

• A layer to be applied after Fully
Connected (or Convolutional) layers and
before non-linear activation functions

43I2DL: Prof. Niessner, Prof. Leal-Taixé [Ioffe and Szegedy, PMLR’15] Batch Normalization

Batch Normalization

• 1. Normalize

• 2. Allow the network to change the range

44I2DL: Prof. Niessner, Prof. Leal-Taixé

These parameters will be
optimized during backprop

Differentiable function so we
can backprop through it….

7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

𝒚 & = 𝛾 & 7𝒙(&) + 𝛽 &

[Ioffe and Szegedy, PMLR’15] Batch Normalization

Batch Normalization

• 1. Normalize

• 2. Allow the network to change the
range

45I2DL: Prof. Niessner, Prof. Leal-Taixé

backprop

The network can
learn to undo the

normalization

𝛾 / = 𝑉𝑎𝑟 𝒙 /

𝛽 / = 𝐸 𝒙 /

[Ioffe and Szegedy, PMLR’15] Batch Normalization

7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

𝒚 & = 𝛾 & 7𝒙(&) + 𝛽 &

Batch Normalization

• Ok to treat dimensions separately?
Shown empirically that even if features are not
correlated, convergence is still faster with this
method

• You can set all biases of the layers before BN to zero,
because they will be cancelled out by BN anyway

46I2DL: Prof. Niessner, Prof. Leal-Taixé [Ioffe and Szegedy, PMLR’15] Batch Normalization

BN: Train vs Test

• Train time: mean and variance is taken over the mini-
batch

• Test-time: what happens if we can just process one
image at a time?
– No chance to compute a meaningful mean and variance

47I2DL: Prof. Niessner, Prof. Leal-Taixé

7𝒙 & =
𝒙 & − 𝐸 𝒙 &

𝑉𝑎𝑟 𝒙 &

[Ioffe and Szegedy, PMLR’15] Batch Normalization

BN: Train vs Test
Training: Compute mean and variance from mini-batch
1,2,3 …

Testing: Compute mean and variance by running an
exponentially weighted averaged across training mini-
batches. Use them as and .

48I2DL: Prof. Niessner, Prof. Leal-Taixé

𝜇0*"0𝜎0*"0$

[Ioffe and Szegedy, PMLR’15] Batch Normalization

𝑉𝑎𝑟1233,34 = 𝛽5 ∗ 𝑉𝑎𝑟1233,34 + 1 − 𝛽5 ∗ 𝑉𝑎𝑟5,3,67089
𝜇1233,34 = 𝛽5 ∗ 𝜇1233,34 + (1 − 𝛽5) ∗ 𝜇5,3,67089

𝛽5 : momentum (hyperparameter)

BN: What do you get?

• Very deep nets are much easier to train à more
stable gradients

• A much larger range of hyperparameters works
similarly when using BN

49I2DL: Prof. Niessner, Prof. Leal-Taixé [Ioffe and Szegedy, PMLR’15] Batch Normalization

BN: A Milestone

50I2DL: Prof. Niessner, Prof. Leal-Taixé

Batch Normalization ⎯ a Milestone

[Wu and He, ECCV’18] Group Normalization

BN: Drawbacks

51I2DL: Prof. Niessner, Prof. Leal-Taixé

Batch: also source of drawbacks

• Small batch

• Varying batch

val error

[Wu and He, ECCV’18] Group Normalization

Other Normalizations

52I2DL: Prof. Niessner, Prof. Leal-Taixé

Our Method: Group Normalization

• GN is batch-independent

• Small batch

• Varying batch

val error

[Wu and He, ECCV’18] Group Normalization

Other Normalizations

53I2DL: Prof. Niessner, Prof. Leal-Taixé

4 Wu and He
H

, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor. The
pixels in blue are normalized by the same mean and variance, computed by aggregating
the values of these pixels. Group Norm is illustrated using a group number of 2.

Group-wise computation. Group convolutions have been presented by AlexNet
[28] for distributing a model into two GPUs. The concept of groups as a di-
mension for model design has been more widely studied recently. The work of
ResNeXt [7] investigates the trade-off between depth, width, and groups, and
it suggests that a larger number of groups can improve accuracy under similar
computational cost. MobileNet [38] and Xception [39] exploit channel-wise (also
called “depth-wise”) convolutions, which are group convolutions with a group
number equal to the channel number. ShuffleNet [40] proposes a channel shuffle
operation that permutes the axes of grouped features. These methods all in-
volve dividing the channel dimension into groups. Despite the relation to these
methods, GN does not require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [3].

3 Group Normalization

The channels of visual representations are not entirely independent. Classical
features of SIFT [14], HOG [15], and GIST [41] are group-wise representations
by design, where each group of channels is constructed by some kind of his-
togram. These features are often processed by group-wise normalization over
each histogram or each orientation. Higher-level features such as VLAD [42]
and Fisher Vectors (FV) [43] are also group-wise features where a group can be
thought of as the sub-vector computed with respect to a cluster.

Analogously, it is not necessary to think of deep neural network features
as unstructured vectors. For example, for conv1 (the first convolutional layer)
of a network, it is reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural images. If conv1 hap-
pens to approximately learn this pair of filters, or if the horizontal flipping (or
other transformations) is made into the architectures by design [44,45], then the
corresponding channels of these filters can be normalized together.

The higher-level layers are more abstract and their behaviors are not as
intuitive. However, in addition to orientations (SIFT [14], HOG [15], or [44,45]),
there are many factors that could lead to grouping, e.g ., frequency, shapes,
illumination, textures. Their coefficients can be interdependent. In fact, a well-
accepted computational model in neuroscience is to normalize across the cell

Image size

Number of channels

Number of elements in the batch

[Wu and He, ECCV’18] Group Normalization

What We Know

54I2DL: Prof. Niessner, Prof. Leal-Taixé

What do we know so far?

55I2DL: Prof. Niessner, Prof. Leal-Taixé

W
id
th

Depth

What do we know so far?

56I2DL: Prof. Niessner, Prof. Leal-Taixé

Concept of a ‘Neuron’

𝜎 𝑠 =
1

1 + 𝑒!"

Σ𝜃#

𝜃$

𝜃%

𝑠

𝑥%

𝑥#

𝑥$

What do we know so far?

57I2DL: Prof. Niessner, Prof. Leal-Taixé

Activation Functions (non-linearities)

• Sigmoid: 𝜎 𝑥 = #
(#+*"')

• TanH: tanh 𝑥

• ReLU: max 0, 𝑥

• Leaky ReLU: max 0.1𝑥, 𝑥

What do we know so far?

58I2DL: Prof. Niessner, Prof. Leal-Taixé

𝑤%

𝑥%

𝑤#

𝑥#

𝑏

*−1+ 1
𝑥

𝑒!

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59

Backpropagation

What do we know so far?

59I2DL: Prof. Niessner, Prof. Leal-Taixé

SGD Variations (Momentum, etc.)

What do we know so far?

60I2DL: Prof. Niessner, Prof. Leal-Taixé

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

Weight Initialization
(e.g., Xavier/2)

e.g., 𝐿$-reg: 𝑅$ 𝑾 = ∑,<#= 𝑤,$

T𝒙 / =
𝒙 / − 𝐸 𝒙 /

𝑉𝑎𝑟 𝒙 /

Why not simply more Layers?

• We cannot make networks arbitrarily complex

• Why not just go deeper and get better?
– No structure!!
– It is just brute force!

– Optimization becomes hard
– Performance plateaus / drops!

61I2DL: Prof. Niessner, Prof. Leal-Taixé

See you next week!

62I2DL: Prof. Niessner, Prof. Leal-Taixé

References
• Goodfellow et al. “Deep Learning” (2016),

– Chapter 6: Deep Feedforward Networks

• Bishop “Pattern Recognition and Machine Learning” (2006),
– Chapter 5.5: Regularization in Network Nets

• http://cs231n.github.io/neural-networks-1/

• http://cs231n.github.io/neural-networks-2/

• http://cs231n.github.io/neural-networks-3/

I2DL: Prof. Niessner, Prof. Leal-Taixé 63

