
Lecture 9 Recap

1I2DL: Prof. Niessner, Prof. Leal-Taixé

What are Convolutions?

2

𝑓 ∗ 𝑔 = %
!"

"

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

𝑓 = red
𝑔 = blue

𝑓 ∗ 𝑔 = green

Convolution of two box functions Convolution of two Gaussians

application of a filter to a function
the ‘smaller’ one is typically called the filter kernel

I2DL: Prof. Niessner, Prof. Leal-Taixé

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

3

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

3 0 0 1 10/3 4 4 16/31) Shrink

2) Pad
often ‘0’

7/3 3 0 0 1 10/3 4 4 16/3 11/3

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

4

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9 2

-5 -9 3O
u

tp
u

t 3
x3

5 ⋅ 4 + −1 ⋅ 3 + −1 ⋅ 4 + −1 ⋅ 9 + −1 ⋅ 1 =
20 − 17 = 3

I2DL: Prof. Niessner, Prof. Leal-Taixé

Image Filters

• Each kernel gives us a different image filter

5

Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean

1
9

1 1 1
1 1 1
1 1 1

Gaussian blur

1
16

1 2 1
2 4 2
1 2 1LET’S LEARN THESE FILTERS!

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolutions on RGB Images

6

32

32
3

3 5

5

32×32×3 image (pixels 𝑥)

5×5×3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

slide over all spatial locations 𝑥#
and compute all output 𝑧# ;
w/o padding, there are
28×28 locations

Convolve

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolution Layer

7

32

32
3

3 5

5

32×32×3 image

5×5×3 filter

1
28

28

activation maps

1

Let’s apply a different filter
with different weights!

Convolve

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolution Layer

8

32

32
3

32×32×3 image

5
28

28

activation maps

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Convolve

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolution Layers: Dimensions

9

In
p

u
t h

e
ig

h
t o

f N

Input: 𝑁×𝑁
Filter: 𝐹×𝐹
Stride: 𝑆
Output: ($!%

&
+ 1)×($!%

&
+ 1)

Input width of N

𝑁 = 7, 𝐹 = 3, 𝑆 = 1: '!(
)
+ 1 = 5

𝑁 = 7, 𝐹 = 3, 𝑆 = 2: '!(
*
+ 1 = 3

𝑁 = 7, 𝐹 = 3, 𝑆 = 3: '!(
(
+ 1 = 2.3333

Fractions are illegal

Filter width
of F

F
ilt

e
r

h
e

ig
h

t
o

f F

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolution Layers: Padding

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

10

Set padding to 𝑃 = %!)
*

Im
ag

e
7x

7
+

ze
ro

 p
ad

d
in

g

Types of convolutions:

• Valid convolution: using
no padding

• Same convolution:
output=input size

I2DL: Prof. Niessner, Prof. Leal-Taixé

Convolution Layers: Dimensions

11

Remember: Output = KLM⋅NOP
Q

+ 1 × KLM⋅NOP
Q

+ 1

REMARK: in practice, typically integer division is used
(i.e., apply the floor–operator!)

Example: 3x3 conv with same padding and strides of 2
on an 64x64 RGB image -> N = 64, F = 3, P = 1, S = 2

Output:
!"#$⋅&'(

$
+ 1 × !"#$⋅&'(

$
+ 1

= 𝑓𝑙𝑜𝑜𝑟 32.5 × 𝑓𝑙𝑜𝑜𝑟 32.5
= 32× 32

I2DL: Prof. Niessner, Prof. Leal-Taixé

CNN Learned Filters

12I2DL: Prof. Niessner, Prof. Leal-Taixé

CNN Prototype

13
Slide by Karpathy

I2DL: Prof. Niessner, Prof. Leal-Taixé

Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

14

6 9

3 4

Single depth slice of input

Max pool with
2×2 filters and stride 2

‘Pooled’ output

I2DL: Prof. Niessner, Prof. Leal-Taixé

Receptive Field

• Spatial extent of the connectivity of a convolutional
filter

15

3x3 output

5x5 receptive field on the original input:
one output value is connected to 25 input pixels

7x7 input

I2DL: Prof. Niessner, Prof. Leal-Taixé

Lecture 10 – CNNs
(part 2)

16I2DL: Prof. Niessner, Prof. Leal-Taixé

Classic Architectures

17I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

18

• Digit recognition: 10 classes

[LeCun et al. ’98] LeNet

Input: 32×32 grayscale images
This one: Labeled as class “7”

I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• Valid convolution: size shrinks
• How many conv filters are there in the first layer?

19

6

I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• At that time average pooling was used, now max
pooling is much more common

20I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• Again valid convolutions, how many filters?

21I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• Use of tanh/sigmoid activations à not common now!

22I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC

23I2DL: Prof. Niessner, Prof. Leal-Taixé

LeNet

• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height Number of Filters

24

60k parameters

I2DL: Prof. Niessner, Prof. Leal-Taixé

Test Benchmarks

• ImageNet Dataset:
ImageNet Large Scale Visual Recognition Competition (ILSVRC)

25

[Russakovsky et al., IJCV’15] “ImageNet Large Scale Visual Recognition Challenge.“

I2DL: Prof. Niessner, Prof. Leal-Taixé

Common Performance Metrics

26

• Top-1 score: check if a sample’s top class (i.e. the one
with highest probability) is the same as its target label

• Top-5 score: check if your label is in your 5 first
predictions (i.e. predictions with 5 highest
probabilities)

• → Top-5 error: percentage of test samples for which
the correct class was not in the top 5 predicted
classes

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

• Cut ImageNet error down in half

27

Non-CNN

CNN

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

28

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

• First filter with stride 4 to reduce size significantly
• 96 filters

29

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

• Use of same convolutions
• As with LeNet, Width, height Number of filters

30

• Use of same convolutions
• As with LeNet: Width, Height Number of Filters

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

31

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

• Softmax for 1000 classes
32

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

AlexNet

• Similar to LeNet but much bigger (~1000 times)

• Use of ReLU instead of tanh/sigmoid

33

60M parameters

[Krizhevsky et al. NIPS’12] AlexNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

34

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

• 2 consecutive convolutional layers, each one with 64
filters

• What is the output size?

35

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

36

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

37

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

• Number of filters is multiplied by 2

38

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

39

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height Number of Filters

• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

40

138M parameters

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

VGGNet

• A lot of architectures
were analyzed

41

[Simonyan and Zisserman 2014]

I2DL: Prof. Niessner, Prof. Leal-Taixé

Skip Connections

42I2DL: Prof. Niessner, Prof. Leal-Taixé

The Problem of Depth

• As we add more and more layers, training becomes
harder

• Vanishing and exploding gradients

• How can we train very deep nets?

43I2DL: Prof. Niessner, Prof. Leal-Taixé

Residual Block

• Two layers

44

Input

Linear Non-linearity

𝑥!"#𝑥!$# 𝑥R

𝑥! = 𝑓(𝑊!𝑥!$# + 𝑏!)𝑊!𝑥!$# + 𝑏!

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"#)

I2DL: Prof. Niessner, Prof. Leal-Taixé

Residual Block

• Two layers

45

Linear Linear

Main path

Input

Skip connection

𝑥!"#𝑥!$# 𝑥R

I2DL: Prof. Niessner, Prof. Leal-Taixé

Residual Block

• Two layers

46

Linear LinearInput

𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"# + 𝑥!$#)

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"#)
I2DL: Prof. Niessner, Prof. Leal-Taixé

Residual Block

• Two layers

• Usually use a same convolution since we need same
dimensions

• Otherwise we need to convert the dimensions with a
matrix of learned weights or zero padding

47

+ 𝑥!"#𝑥!$# 𝑥R

I2DL: Prof. Niessner, Prof. Leal-Taixé

ResNet Block

48

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈𝐻(𝑥)

Any two
stacked layers

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Plain Net Residual Net

𝐹(𝑥)
Identity

𝑥

[He et al. CVPR’16] ResNet
I2DL: Prof. Niessner, Prof. Leal-Taixé

ResNet

• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

49

ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet
I2DL: Prof. Niessner, Prof. Leal-Taixé

ResNet

• If we make the network deeper, at some point
performance starts to degrade

50I2DL: Prof. Niessner, Prof. Leal-Taixé

ResNet

• If we make the network deeper, at some point
performance starts to degrade

51I2DL: Prof. Niessner, Prof. Leal-Taixé

Why do ResNets Work?

• How is this block really affecting me?

52

+
NN 𝑥!"#𝑥!$# 𝑥R

I2DL: Prof. Niessner, Prof. Leal-Taixé

Why do ResNets Work?

53

+
NN

~zero ~zero

𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"# + 𝑥!$#)

𝑥!"# = 𝑓(𝑥!$#)
I2DL: Prof. Niessner, Prof. Leal-Taixé

Why do ResNets Work?

• We kept the same values and added a non-linearity

54

+
NN 𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑥!$#)
I2DL: Prof. Niessner, Prof. Leal-Taixé

Why do ResNets Work?

• The identity is easy for the residual block to learn
• Guaranteed it will not hurt performance, can only

improve

55

+
NN 𝑥!"#𝑥!$# 𝑥R

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolutions

56I2DL: Prof. Niessner, Prof. Leal-Taixé

Recall: Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

57

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6

O
u

tp
u

t 3
x3

5 ⋅ 3 + −1 ⋅ 3 + −1 ⋅ 2 + −1 ⋅ 0 + −1 ⋅ 4 =
15 − 9 = 6

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

58

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

What is the output size?

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

59

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

−5 ∗ 2 = −10

-10

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

60

2

Im
ag

e
5x

5

K
er

ne
l 1

x1

−1 ∗ 2 = −2

-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

61

Im
ag

e
5x

5

-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2

• 1x1 kernel: keeps the dimensions and scales input

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

62

• Same as having a 3 neuron fully connected layer

32

32

3

1 output

I2DL: Prof. Niessner, Prof. Leal-Taixé

1x1 Convolution

63

• As always we use more convolutional filters

32

32

3
5

32

325 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 1𝑥1𝑥3

[Li et al. 2013]

I2DL: Prof. Niessner, Prof. Leal-Taixé

Using 1x1 Convolutions

64

• Use it to shrink the number of channels
• Further adds a non-linearity à one can learn more

complex functions

32

32
200

32

32
32

32 Conv 1x1x200
+ ReLU

I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer

65I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer

• Tired of choosing filter sizes?

• Use them all!

• All same convolutions

• 3x3 max pooling is with stride 1

66I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer

• Possible size of the
output

• Not sustainable!

67I2DL: Prof. Niessner, Prof. Leal-Taixé

28×28×192

28×28×64 28×28×3228×28×128 28×28×192

28×28×416

Inception Layer: Computational Cost

68

32

32
200

32

32
92

92 Conv 5x5x200
+ ReLU

Multiplications: 5x5x200

1 value of the output volume

x 32x32x92 ~ 470 million

I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer: Computational Cost

69

32

32
200

92 Conv 5x5
+ ReLU

Multiplications: 1x1x200x32x32x16 5x5x16x32x32x92 ~ 40 million

32

32
92

16 Conv 1x1
+ ReLU

32

32
16

Reduction of multiplications by 1/10
I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer

70
[Szegedy et al CVPR’15] GoogLeNet

I2DL: Prof. Niessner, Prof. Leal-Taixé

Inception Layer: Dimensions

71

�[��FRQYROXWLRQV �[��FRQYROXWLRQV �[��FRQYROXWLRQV

)LOWHU�
FRQFDWHQDWLRQ

3UHYLRXV�OD\HU

�[��PD[�SRROLQJ

(a) Inception module, naı̈ve version

�[��FRQYROXWLRQV

�[��FRQYROXWLRQV �[��FRQYROXWLRQV

)LOWHU�
FRQFDWHQDWLRQ

3UHYLRXV�OD\HU

�[��PD[�SRROLQJ�[��FRQYROXWLRQV �[��FRQYROXWLRQV

�[��FRQYROXWLRQV

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

28×28×192

28×28×64

28×28×16

28×28×3228×28×128

28×28×96 28×28×192

28×28×32

28×28×256
We do not want max pool
result to take up almost all

the output

[Szegedy et al CVPR’15] GoogLeNet
I2DL: Prof. Niessner, Prof. Leal-Taixé

GoogLeNet: Using the Inception Layer

72

Inception block

Extra max pool layers to
reduce dimensionality

[Szegedy et al CVPR’15] GoogLeNet
I2DL: Prof. Niessner, Prof. Leal-Taixé

Xception Net

• „Extreme version of Inception“: applying (modified)
Depthwise Separable Convolutions instead of normal
convolutions

• 36 conv layers, structured into several modules with
skip connections

• outperforms Inception Net V3

73

[Chollet CVPR’17] Xception

I2DL: Prof. Niessner, Prof. Leal-Taixé

Depth-wise separable convolutions

74

Normal convolutions act on all channels.

I2DL: Prof. Niessner, Prof. Leal-Taixé

Depth-wise separable convolutions

75

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

Filters are applied only at certain depths of the features.
Normal convolutions have groups set to 1, the convolutions
used in this image have groups set to 3.

I2DL: Prof. Niessner, Prof. Leal-Taixé

Depth-wise separable convolutions

76

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But the depth size is always the same!

I2DL: Prof. Niessner, Prof. Leal-Taixé

Depth-wise separable convolutions

77

Solution:
1x1 convs!

I2DL: Prof. Niessner, Prof. Leal-Taixé

But why?

78

Original convolution
256 kernels of size 5x5x3

Multiplications:
256x5x5x3 x (8x8 locations) = 1.228.800

I2DL: Prof. Niessner, Prof. Leal-Taixé

But why?

79

Original convolution
256 kernels of size 5x5x3

Multiplications:
256x5x5x3 x (8x8 locations) = 1.228.800

Depth-wise convolution
3 kernels of size 5x5x1

Multiplications:
5x5x3 x (8x8 locations) = 4800

1x1 convolution
256 kernels of size 1x1x3

Multiplications:
256x1x1x3x (8x8 locations) = 49152

Less
computations!

I2DL: Prof. Niessner, Prof. Leal-Taixé

ImageNet Benchmark

28,2
25,8

16,4

11,7

7,3 6,66
5,5

3,57 2,99 2,25

0

20

40

60

80

100

120

140

160

0

5

10

15

20

25

30

ILSVRC
2010

ILSVRC
2011

AlexNet
(ILSVRC

2012)

ZF
(ILSVRC

2013)

VGG
(ILSVRC

2014)

GoogLeNet
(ILSVRC

2014)

Xception
(2016)

ResNet
(ILSVRC

2015)

Trimps-
Soushen
(ILSVRC

2016)

SENet
(ILSVRC

2017)

ImageNet Classification top-5-error (%)

83

22 Layers 36 Layers
19 Layers

8 Layers

8 Layers

Shallow

Revolution of Depth
152 Layers

I2DL: Prof. Niessner, Prof. Leal-Taixé

Fully Convolutional
Network

84I2DL: Prof. Niessner, Prof. Leal-Taixé

“tabby
cat”

Classification Network

85I2DL: Prof. Niessner, Prof. Leal-Taixé

FCN: Becoming Fully Convolutional

86

Convert fully connected layers to convolutional layers!

I2DL: Prof. Niessner, Prof. Leal-Taixé

FCN: Becoming Fully Convolutional

87I2DL: Prof. Niessner, Prof. Leal-Taixé

FCN: Upsampling Output

88I2DL: Prof. Niessner, Prof. Leal-Taixé

Semantic Segmentation (FCN)

89

[Long and Shelhamer. 15] FCN

How do we go back
to the input size?

I2DL: Prof. Niessner, Prof. Leal-Taixé

Types of Upsampling

• 1. Interpolation

90

?

I2DL: Prof. Niessner, Prof. Leal-Taixé

Types of Upsampling

• 1. Interpolation

91

Original image

Nearest neighbor interpolation Bilinear interpolation Bicubic interpolation

Image: Michael GuerzhoyI2DL: Prof. Niessner, Prof. Leal-Taixé

Types of Upsampling

• 1. Interpolation

Few artifacts

92I2DL: Prof. Niessner, Prof. Leal-Taixé

Types of Upsampling
• 2. Transposed conv

93

[A. Dosovitskiy, TPAMI 2017] “Learning to Generate Chairs, Tables and Cars with Convolutional Networks“

+ CONVS

efficient

I2DL: Prof. Niessner, Prof. Leal-Taixé

Types of Upsampling

• 2. Transposed convolution

- Unpooling
- Convolution filter (learned)

- Also called up-convolution
(never deconvolution)

94

Output 5x5

Input 3x3

I2DL: Prof. Niessner, Prof. Leal-Taixé

Refined Outputs

• If one does a cascade of unpooling + conv
operations, we get to the encoder-decoder
architecture

• Even more refined: Autoencoders with skip
connections (aka U-Net)

95I2DL: Prof. Niessner, Prof. Leal-Taixé

96

U-Net

U-Net architecture: Each blue box is a multichannel feature map. Number of channels
denoted at the top of the box . Dimensions at the top of the box. White boxes are the

copied feature maps.
[Ronneberger et al. MICCAI’15] U-NetI2DL: Prof. Niessner, Prof. Leal-Taixé

U-Net: Encoder

Left side: Contraction Path (Encoder)
• Captures context of the image
• Follows typical architecture of a CNN:

– Repeated application of 2 unpadded 3x3 convolutions
– Each followed by ReLU activation

– 2x2 maxpooling operation with stride 2 for downsampling
– At each downsampling step, # of channels is doubled

à as before: Height, Width , Depth:

97

[Ronneberger et al. MICCAI’15] U-Net

I2DL: Prof. Niessner, Prof. Leal-Taixé

U-Net: Decoder
Right Side: Expansion Path (Decoder):
• Upsampling to recover spatial locations for assigning

class labels to each pixel
– 2x2 up-convolution that halves number of input channels
– Skip Connections: outputs of up-convolutions are concatenated

with feature maps from encoder
– Followed by 2 ordinary 3x3 convs
– final layer: 1x1 conv to map 64 channels to # classes

• Height, Width: , Depth:

98

[Ronneberger et al. MICCAI’15] U-Net

I2DL: Prof. Niessner, Prof. Leal-Taixé

See you next time!

99I2DL: Prof. Niessner, Prof. Leal-Taixé

References
We highly recommend to read through these papers!
• AlexNet [Krizhevsky et al. 2012]
• VGGNet [Simonyan & Zisserman 2014]
• ResNet [He et al. 2015]
• GoogLeNet [Szegedy et al. 2014]
• Xception [Chollet 2016]
• Fast R-CNN [Girshick 2015]
• U-Net [Ronneberger et al. 2015]
• EfficientNet [Tan & Le 2019]

100I2DL: Prof. Niessner, Prof. Leal-Taixé

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1905.11946

