
Lecture 9 Recap
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What are Convolutions?
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𝑓 ∗ 𝑔 = %
!"

"

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

𝑓 = red
𝑔 = blue

𝑓 ∗ 𝑔 = green

Convolution of two box functions Convolution of two Gaussians

application of a filter to a function
the ‘smaller’ one is typically called the filter kernel
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What are Convolutions?

4 3 2 -5 3 5 2 5 5 6
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?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

3 0 0 1 10/3 4 4 16/31) Shrink

2) Pad 
often ‘0’

7/3 3 0 0 1 10/3 4 4 16/3 11/3
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Convolutions on Images
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5 ⋅ 4 + −1 ⋅ 3 + −1 ⋅ 4 + −1 ⋅ 9 + −1 ⋅ 1 =
20 − 17 = 3
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Image Filters

• Each kernel gives us a different image filter
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Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean

1
9

1 1 1
1 1 1
1 1 1

Gaussian blur

1
16

1 2 1
2 4 2
1 2 1LET’S LEARN THESE FILTERS!
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Convolutions on RGB Images
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32

32
3

3 5

5

32×32×3 image (pixels 𝑥)

5×5×3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

slide over all spatial locations 𝑥#
and compute all output 𝑧# ;
w/o padding, there are 
28×28 locations

Convolve
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Convolution Layer
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32

32
3

3 5

5

32×32×3 image

5×5×3 filter

1
28

28

activation maps

1

Let’s apply a different filter
with different weights!

Convolve
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Convolution Layer
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32

32
3

32×32×3 image

5
28

28

activation maps

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Convolve
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Convolution Layers: Dimensions
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Filter: 𝐹×𝐹
Stride: 𝑆
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Input width of N

𝑁 = 7, 𝐹 = 3, 𝑆 = 1: '!(
)
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𝑁 = 7, 𝐹 = 3, 𝑆 = 2: '!(
*
+ 1 = 3
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Convolution Layers: Padding
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0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

10

Set padding to 𝑃 = %!)
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Types of convolutions:

• Valid convolution: using 
no padding

• Same convolution: 
output=input size
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Convolution Layers: Dimensions

11

Remember: Output = KLM⋅NOP
Q

+ 1 × KLM⋅NOP
Q

+ 1

REMARK: in practice, typically integer division is used 
(i.e., apply the floor–operator!)

Example: 3x3 conv with same padding and strides of 2 
on an 64x64 RGB image -> N = 64, F = 3, P = 1, S = 2

Output: 
!"#$⋅&'(

$
+ 1 × !"#$⋅&'(

$
+ 1

= 𝑓𝑙𝑜𝑜𝑟 32.5 × 𝑓𝑙𝑜𝑜𝑟 32.5
= 32× 32
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CNN Learned Filters
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CNN Prototype
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Slide by Karpathy
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Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3
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6 9

3 4

Single depth slice of input

Max pool with
2×2 filters and stride 2

‘Pooled’ output
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Receptive Field

• Spatial extent of the connectivity of a convolutional 
filter

15

3x3 output

5x5 receptive field on the original input: 
one output value is connected to 25 input pixels

7x7 input
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Lecture 10 – CNNs 
(part 2)
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Classic Architectures

17I2DL: Prof. Niessner, Prof. Leal-Taixé



LeNet

18

• Digit recognition: 10 classes

[LeCun et al. ’98] LeNet

Input: 32×32 grayscale images
This one: Labeled as class “7”
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LeNet

• Digit recognition: 10 classes

• Valid convolution: size shrinks
• How many conv filters are there in the first layer?
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6
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LeNet

• Digit recognition: 10 classes

• At that time average pooling was used, now max 
pooling is much more common
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LeNet

• Digit recognition: 10 classes

• Again valid convolutions, how many filters?

21I2DL: Prof. Niessner, Prof. Leal-Taixé



LeNet

• Digit recognition: 10 classes

• Use of tanh/sigmoid activations à not common now!
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LeNet

• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
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LeNet

• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height       Number of Filters

24

60k parameters
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Test Benchmarks

• ImageNet Dataset:
ImageNet Large Scale Visual Recognition Competition (ILSVRC)
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[Russakovsky et al., IJCV’15] “ImageNet Large Scale Visual Recognition Challenge.“
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Common Performance Metrics
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• Top-1 score: check if a sample’s top class (i.e. the one 
with highest probability) is the same as its target label 

• Top-5 score: check if your label is in your 5 first 
predictions (i.e. predictions with 5 highest 
probabilities)

• → Top-5 error: percentage of test samples for which 
the correct class was not in the top 5 predicted 
classes
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AlexNet

• Cut ImageNet error down in half
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Non-CNN

CNN
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AlexNet
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[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• First filter with stride 4 to reduce size significantly
• 96 filters
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[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• Use of same convolutions
• As with LeNet, Width, height        Number of filters
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• Use of same convolutions
• As with LeNet: Width, Height        Number of Filters

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet
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[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• Softmax for 1000 classes
32

[Krizhevsky et al. NIPS’12] AlexNet
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AlexNet

• Similar to LeNet but much bigger (~1000 times)

• Use of ReLU instead of tanh/sigmoid

33

60M parameters

[Krizhevsky et al. NIPS’12] AlexNet
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VGGNet

• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2
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[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• 2 consecutive convolutional layers, each one with 64 
filters

• What is the output size?

35

Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet
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Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet

I2DL: Prof. Niessner, Prof. Leal-Taixé



VGGNet
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Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• Number of filters is multiplied by 2
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Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet
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Conv=3x3,s=1,same
Maxpool=2x2,s=2

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, Height       Number of Filters

• Called VGG-16: 16 layers that have weights

• Large but simplicity makes it appealing

40

138M parameters

[Simonyan and Zisserman ICLR’15] VGGNet
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VGGNet

• A lot of architectures 
were analyzed
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[Simonyan and Zisserman 2014]
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Skip Connections
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The Problem of Depth

• As we add more and more layers, training becomes 
harder

• Vanishing and exploding gradients

• How can we train very deep nets?
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Residual Block

• Two layers
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Input

Linear Non-linearity

𝑥!"#𝑥!$# 𝑥R

𝑥! = 𝑓(𝑊!𝑥!$# + 𝑏!)𝑊!𝑥!$# + 𝑏!

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"#)
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Residual Block

• Two layers

45

Linear Linear

Main path

Input

Skip connection

𝑥!"#𝑥!$# 𝑥R

I2DL: Prof. Niessner, Prof. Leal-Taixé



Residual Block

• Two layers
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Linear LinearInput

𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"# + 𝑥!$#)

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"#)
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Residual Block

• Two layers

• Usually use a same convolution since we need same 
dimensions

• Otherwise we need to convert the dimensions with a 
matrix of learned weights or zero padding

47

+ 𝑥!"#𝑥!$# 𝑥R
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ResNet Block
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Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈𝐻(𝑥)

Any two 
stacked layers

Weight Layer

Weight Layer

𝑥

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

+𝐹 𝑥 + 𝑥

Plain Net Residual Net

𝐹(𝑥)
Identity

𝑥

[He et al. CVPR’16] ResNet
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ResNet

• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout
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ResNet-152:
60M parameters

[He et al. CVPR’16] ResNet
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ResNet

• If we make the network deeper, at some point 
performance starts to degrade
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ResNet

• If we make the network deeper, at some point 
performance starts to degrade
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Why do ResNets Work?

• How is this block really affecting me?

52

+
NN 𝑥!"#𝑥!$# 𝑥R
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Why do ResNets Work?

53

+
NN

~zero ~zero

𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑊!"#𝑥! + 𝑏!"# + 𝑥!$#)

𝑥!"# = 𝑓(𝑥!$#)
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Why do ResNets Work?

• We kept the same values and added a non-linearity
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+
NN 𝑥!"#𝑥!$# 𝑥R

𝑥!"# = 𝑓(𝑥!$#)
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Why do ResNets Work?

• The identity is easy for the residual block to learn
• Guaranteed it will not hurt performance, can only 

improve

55

+
NN 𝑥!"#𝑥!$# 𝑥R
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1x1 Convolutions
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Recall: Convolutions on Images
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5 ⋅ 3 + −1 ⋅ 3 + −1 ⋅ 2 + −1 ⋅ 0 + −1 ⋅ 4 =
15 − 9 = 6
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1x1 Convolution
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What is the output size?

I2DL: Prof. Niessner, Prof. Leal-Taixé



1x1 Convolution
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1x1 Convolution
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−1 ∗ 2 = −2

-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2
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1x1 Convolution
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-10 6 4 -10 6

8 6 4 2 -6

2 0 6 6 10

-4 0 2 8 8

10 12 14 18 -2

• 1x1 kernel: keeps the dimensions and scales input
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1x1 Convolution
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• Same as having a 3 neuron fully connected layer

32

32

3

1 output
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1x1 Convolution
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• As always we use more convolutional filters

32

32

3
5

32

325 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 1𝑥1𝑥3

[Li et al. 2013]
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Using 1x1 Convolutions

64

• Use it to shrink the number of channels
• Further adds a non-linearity à one can learn more 

complex functions

32

32
200

32

32
32

32 Conv 1x1x200
+ ReLU
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Inception Layer
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Inception Layer

• Tired of choosing filter sizes?

• Use them all!

• All same convolutions

• 3x3 max pooling is with stride 1
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Inception Layer

• Possible size of the 
output

• Not sustainable!
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28×28×192

28×28×64 28×28×3228×28×128 28×28×192

28×28×416



Inception Layer: Computational Cost

68

32

32
200

32

32
92

92 Conv 5x5x200
+ ReLU

Multiplications: 5x5x200 

1 value of the output volume

x 32x32x92 ~ 470 million 
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Inception Layer: Computational Cost
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32

32
200

92 Conv 5x5
+ ReLU

Multiplications: 1x1x200x32x32x16 5x5x16x32x32x92 ~ 40 million 

32

32
92

16 Conv 1x1
+ ReLU

32

32
16

Reduction of multiplications by 1/10
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Inception Layer

70
[Szegedy et al CVPR’15] GoogLeNet
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Inception Layer: Dimensions
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(a) Inception module, naı̈ve version
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�[��FRQYROXWLRQV

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

28×28×192

28×28×64

28×28×16

28×28×3228×28×128

28×28×96 28×28×192

28×28×32

28×28×256
We do not want max pool 
result to take up almost all 

the output

[Szegedy et al CVPR’15] GoogLeNet
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GoogLeNet: Using the Inception Layer

72

Inception block

Extra max pool layers to 
reduce dimensionality

[Szegedy et al CVPR’15] GoogLeNet
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Xception Net

• „Extreme version of Inception“: applying (modified) 
Depthwise Separable Convolutions instead of normal 
convolutions

• 36 conv layers, structured into several modules with 
skip connections

• outperforms Inception Net V3

73

[Chollet CVPR’17] Xception
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Depth-wise separable convolutions

74

Normal convolutions act on all channels.
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Depth-wise separable convolutions
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classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

Filters are applied only at certain depths of the features. 
Normal convolutions have groups set to 1, the convolutions 
used in this image have groups set to 3.
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Depth-wise separable convolutions

76

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But the depth size is always the same!
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Depth-wise separable convolutions
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Solution: 
1x1 convs!
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But why?

78

Original convolution
256 kernels of size 5x5x3

Multiplications: 
256x5x5x3 x (8x8 locations) = 1.228.800
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But why?

79

Original convolution
256 kernels of size 5x5x3

Multiplications: 
256x5x5x3 x (8x8 locations) = 1.228.800

Depth-wise convolution
3 kernels of size 5x5x1

Multiplications: 
5x5x3 x (8x8 locations) = 4800

1x1 convolution
256 kernels of size 1x1x3

Multiplications:
256x1x1x3x (8x8 locations) = 49152

Less 
computations!
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ImageNet Benchmark
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22 Layers 36 Layers
19 Layers

8 Layers

8 Layers

Shallow

Revolution of Depth
152 Layers
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Fully Convolutional 
Network
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“tabby 
cat”

Classification Network

85I2DL: Prof. Niessner, Prof. Leal-Taixé



FCN: Becoming Fully Convolutional
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Convert fully connected layers to convolutional layers!
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FCN: Becoming Fully Convolutional
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FCN: Upsampling Output
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Semantic Segmentation (FCN)
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[Long and Shelhamer. 15] FCN

How do we go back 
to the input size?
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Types of Upsampling

• 1. Interpolation

90

?
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Types of Upsampling

• 1. Interpolation
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Original image

Nearest neighbor interpolation    Bilinear interpolation          Bicubic interpolation

Image: Michael GuerzhoyI2DL: Prof. Niessner, Prof. Leal-Taixé



Types of Upsampling

• 1. Interpolation

Few artifacts 
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Types of Upsampling
• 2. Transposed conv

93

[A. Dosovitskiy, TPAMI 2017] “Learning to Generate Chairs, Tables and Cars with Convolutional Networks“

+ CONVS

efficient
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Types of Upsampling

• 2. Transposed convolution

- Unpooling
- Convolution filter (learned)

- Also called up-convolution
(never deconvolution)
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Output 5x5

Input 3x3
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Refined Outputs

• If one does a cascade of unpooling + conv 
operations, we get to the encoder-decoder 
architecture

• Even more refined: Autoencoders with skip 
connections (aka U-Net)
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U-Net

U-Net architecture: Each blue box is a multichannel feature map. Number of channels 
denoted at the top of the box . Dimensions at the top of the box. White boxes are the 

copied feature maps.
[Ronneberger et al. MICCAI’15] U-NetI2DL: Prof. Niessner, Prof. Leal-Taixé



U-Net: Encoder

Left side: Contraction Path (Encoder) 
• Captures context of the image
• Follows typical architecture of a CNN: 

– Repeated application of 2 unpadded 3x3 convolutions 
– Each followed by ReLU activation

– 2x2 maxpooling operation with stride 2 for downsampling
– At each downsampling step, # of channels is doubled

à as before: Height, Width   ,    Depth: 
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[Ronneberger et al. MICCAI’15] U-Net
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U-Net: Decoder
Right Side: Expansion Path (Decoder):
• Upsampling to recover spatial locations for assigning 

class labels to each pixel 
– 2x2 up-convolution that halves number of input channels
– Skip Connections: outputs of up-convolutions are concatenated 

with feature maps from encoder
– Followed by 2 ordinary 3x3 convs
– final layer: 1x1 conv to map 64 channels to # classes

• Height, Width:    , Depth:
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[Ronneberger et al. MICCAI’15] U-Net
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See you next time!
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