Lecture 5 recap
Neural Network

Prof. Leal-Taixé and Prof. Niessner
Gradient Descent for Neural Networks

\[h_j = A(b_{0,j} + \sum_k x_k w_{0,j,k}) \]

\[y_i = A(b_{1,i} + \sum_j h_j w_{1,i,j}) \]

Just simple: \(A(x) = \max(0, x) \)

\[L_i = (y_i - t_i)^2 \]

\[\nabla_{w,b} f_{\{x,t\}}(w) = \begin{bmatrix} \frac{\partial f}{\partial w_{0,0,0}} \\ \vdots \\ \frac{\partial f}{\partial w_{l,m,n}} \\ \vdots \\ \frac{\partial f}{\partial b_{l,m}} \end{bmatrix} \]
Stochastic Gradient Descent (SGD)

\[\theta^{k+1} = \theta^k - \alpha \nabla_{\theta} L(\theta^k, x_{1..m}, y_{1..m}) \]

\[\nabla_{\theta} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L_i \]

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner
Gradient Descent with Momentum

\[\nu^{k+1} = \beta \cdot \nu^k + \nabla_\theta L(\theta^k) \]

- accumulation rate (‘friction’, momentum)
- Gradient of current minibatch

\[\theta^{k+1} = \theta^k - \alpha \cdot \nu^{k+1} \]

- model
- learning rate

Exponentially-weighted average of gradient
Important: velocity \(\nu^k \) is vector-valued!
Gradient Descent with Momentum

Step will be largest when a sequence of gradients all point to the same direction

Hyperparameters are α, β

β is often set to 0.9

$$\theta^{k+1} = \theta^k - \alpha \cdot v^{k+1}$$
RMSProp

\[s^{k+1} = \beta \cdot s^k + (1 - \beta) \left[\nabla_{\theta} L \circ \nabla_{\theta} L \right] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla_{\theta} L}{\sqrt{s^{k+1}} + \epsilon} \]

Hyperparameters: \(\alpha, \beta, \epsilon \)

- Needs tuning!
- Often 0.9
- Typically \(10^{-8} \)
RMSProp

(uncentered) variance of gradients
-> second momentum

We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

Can increase learning rate!

\[
S^{k+1} = \beta \cdot S^k + (1 - \beta)[\nabla_{\theta} L \circ \nabla_{\theta} L]
\]

\[
\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla_{\theta} L}{\sqrt{S^{k+1}} + \epsilon}
\]

Fig. credit: A. Ng
Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

First momentum: mean of gradients

\[m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla_\theta L(\theta^k) \]

Second momentum: variance of gradients

\[\nu^{k+1} = \beta_2 \cdot \nu^k + (1 - \beta_2) [\nabla_\theta L(\theta^k) \circ \nabla_\theta L(\theta^k)] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{m^{k+1}}{\sqrt{\nu^{k+1} + \epsilon}} \]
Adam

Combines Momentum and RMSProp

\[m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla \theta L(\theta^k) \]

\[\nu^{k+1} = \beta_2 \cdot \nu^k + (1 - \beta_2) [\nabla \theta L(\theta^k) \cdot \nabla \theta L(\theta^k)] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\hat{m}^{k+1}}{\sqrt{\hat{\nu}^{k+1}} + \epsilon} \]

\[m^{k+1} \text{ and } \nu^{k+1} \text{ are initialized with zero} \]
\[\text{- bias towards zero} \]

Typically, bias-corrected moment updates

\[\hat{m}^{k+1} = \frac{m^k}{1 - \beta_1} \]

\[\hat{\nu}^{k+1} = \frac{\nu^k}{1 - \beta_2} \]
Convergence

Prof. Leal-Taixé and Prof. Niessner
Convergence

Prof. Leal-Taixé and Prof. Niessner
Importance of Learning Rate

- **very high learning rate**
- **low learning rate**
- **high learning rate**
- **good learning rate**
Jacobian and Hessian

- Derivative \(f : \mathbb{R} \rightarrow \mathbb{R} \) \(\frac{df(x)}{dx} \)
- Gradient \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) \(\nabla_x f(x) \) \(\left(\frac{df(x)}{dx_1}, \frac{df(x)}{dx_2} \right) \)
- Jacobian \(f : \mathbb{R}^m \rightarrow \mathbb{R}^n \) \(J \in \mathbb{R}^{n \times m} \)
- Hessian \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) \(H \in \mathbb{R}^{m \times m} \)

SECOND DERIVATIVE

Prof. Leal-Taixé and Prof. Niessner
Newton’s method

• Approximate our function by a second-order Taylor series expansion

\[L(\theta) \approx L(\theta_0) + (\theta - \theta_0)^T \nabla_\theta L(\theta_0) + \frac{1}{2} (\theta - \theta_0)^T H(\theta - \theta_0) \]

First derivative

Second derivative (curvature)
Newton’s method

- Differentiate and equate to zero

$$\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta)$$

Update step

We got rid of the learning rate!

$$\text{SGD} \quad \theta_{k+1} = \theta_k - \epsilon \nabla_\theta L(\theta_k, x^i, y^i)$$
Newton's method

- Differentiate and equate to zero

\[\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta) \]

Update step

<table>
<thead>
<tr>
<th>Parameters of a network (millions)</th>
<th>Number of elements in the Hessian</th>
<th>Computational complexity of ‘inversion’ per iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(k^2)</td>
<td>(\mathcal{O}(k^3))</td>
</tr>
</tbody>
</table>
Newton’s method

• SGD (green)

• Newton’s method exploits the curvature to take a more direct route
Newton’s method

\[J(\theta) = (y - X\theta)^T (y - X\theta) \]

Can you apply Newton’s method for linear regression? What do you get as a result?
BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

\[\theta^* = \theta_0 - H^{-1} \nabla_\theta L(\theta) \]

- BFGS $\mathcal{O}(n^2)$
- Limited memory: L-BFGS $\mathcal{O}(n)$
Gauss-Newton

- \(x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k) \)
 - 'true' 2nd derivatives are often hard to obtain (e.g., numerics)
 - \(H_f \approx 2J_F^T J_F \)
- Gauss-Newton (GN):
 \[
 x_{k+1} = x_k - [2J_F(x_k)^T J_F(x_k)]^{-1} \nabla f(x_k)
 \]
- Solve linear system (again, inverting a matrix is unstable):
 \[
 2(J_F(x_k)^T J_F(x_k)) (x_k - x_{k+1}) = \nabla f(x_k)
 \]
 Solve for delta vector
Levenberg

- Levenberg
 - “damped” version of Gauss-Newton:
 - $(J_F(x_k)^T J_F(x_k) + \lambda \cdot I) \cdot (x_k - x_{k+1}) = \nabla f(x_k)$
 - The damping factor λ is adjusted in each iteration ensuring:
 - $f(x_k) > f(x_{k+1})$
 - if inequation is not fulfilled increase λ
 - \rightarrow Trust region

- “Interpolation” between Gauss-Newton (small λ) and Gradient Descent (large λ)
Levenberg-Marquardt

- Levenberg-Marquardt (LM)

\[
(J_F(x_k)^T J_F(x_k) + \lambda \cdot \text{diag}(J_F(x_k)^T J_F(x_k))) \cdot (x_k - x_{k+1})
= \nabla f(x_k)
\]

- Instead of a plain Gradient Descent for large λ, scale each component of the gradient according to the curvature.
 - Avoids slow convergence in components with a small gradient
Which, what and when?

• **Standard:** *Adam*

• **Fallback option:** *SGD with momentum*

• **Newton, L-BFGS, GN, LM** only if you can do full batch updates (doesn’t work well for minibatches!!)

This practically never happens for DL
Theoretically, it would be nice though due to fast convergence
General Optimization

• Linear Systems (Ax = b)
 – LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.
• Non-linear (gradient-based)
 – Newton, Gauss-Newton, LM, (L)BFGS <- second order
 – Gradient Descent, SGD <- first order

• Others:
 – Genetic algorithms, MCMC, Metropolis-Hastings, etc.
 – Constrained and convex solvers (Langrange, ADMM, Primal-Dual, etc.)
Please Remember!

• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!
Importance of Learning Rate
Learning Rate

Need high learning rate when far away
Need low learning rate when close
Learning Rate Decay

- $\alpha = \frac{1}{1 + \text{decayrate} \cdot \text{epoch}} \cdot \alpha_0$

- E.g., $\alpha_0 = 0.1$, decayrate = 1.0

- > Epoch 0: 0.1
- > Epoch 1: 0.05
- > Epoch 2: 0.033
- > Epoch 3: 0.025

...
Learning Rate Decay

Many options:

- Step decay $\alpha = \alpha - t \cdot \alpha$ (only every n steps)
 - T is decay rate (often 0.5)

- Exponential decay $\alpha = t^{\text{epoch}} \cdot \alpha_0$
 - t is decay rate ($t < 1.0$)

- $\alpha = \frac{t}{\sqrt{\text{epoch}}} \cdot \alpha_0$
 - t is decay rate

- Etc.
Training Schedule

Manually specify learning rate for entire training process

- Manually set learning rate every n-epochs
- How?
 - Trial and error (the hard way)
 - Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.
Learning Rate: Implications

• What if too high?

• What if too low?
Training

• Given ground dataset with ground labels
 – \(\{x_i, y_i\} \)
 • For instance \(x_i \)-th training image, with label \(y_i \)
 • Often \(\text{dim}(x) \gg \text{dim}(y) \) (e.g., for classification)
 • \(i \) is often in the 100-thousands or millions
 – Take network \(f \) and its parameters \(w, b \)

 – Use SGD (or variation) to find optimal parameters \(w, b \)
 • Gradients from backprop
Learning

• Learning means generalization to unknown dataset
 – (so far no ‘real’ learning)
 – I.e., train on known dataset -> test with optimized parameters on unknown dataset

• Basically, we hope that based on the train set, the optimized parameters will give similar results on different data (i.e., test data)
Learning

- **Training set (‘train’):**
 - Use for training your neural network

- **Validation set (‘val’):**
 - Hyperparameter optimization
 - Check generalization progress

- **Test set (‘test’):**
 - Only for the very end
 - NEVER TOUCH DURING DEVELOPMENT OR TRAINING
Learning

• Typical splits
 – Train (60%), Val (20%), Test (20%)
 – Train (80%), Val (10%), Test (10%)

• During training:
 – Train error comes from average mini-batch error
 – Typically take subset of validation every n iterations
Learning

- Training graph
 - Accuracy
 - Loss

(EMA smoothing)
Learning

- Validation graph
Over- and Underfitting

Underfitted

Appropriate

Overfitted

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O'Reily Media Inc., 2017

Prof. Leal-Taixé and Prof. Niessner
Over- and Underfitting

Source: http://sradas.github.io/DLBook/ImprovingModelGeneralization.html
Hyperparameters

- Network architecture (e.g., num layers, #weights)
- Number of iterations
- Learning rate(s) (i.e., solver parameters, decay, etc.)
- Regularization (more later next lecture)
- Batch size
- ...
- Overall: learning setup + optimization = hyperparameter
Hyperparameter Tuning

- **Methods:**
 - Manual search: most common 😊
 - Grid search (structured, for ‘real’ applications)
 - Define ranges for all parameters spaces and select points (usually pseudo-uniformly distributed). Iterate over all possible configurations
 - Random search:
 - Like grid search but one picks points at random in the predefined ranges
Simple Grid Search Example

learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
um_iters = [500, 1000, 1500]
best_val = 0

for learning_rate in learning_rates:
 for reg in regularization_strengths:
 for iterations in num_iters:
 model = train_model(learning_rate, reg, iterations)
 validation_accuracy = evaluate(model)
 if validation_accuracy > best_val:
 best_val = validation_accuracy
 best_model = model
Cross Validation

- Example: $k=5$

![Diagram of cross validation process]

Figure extracted from cs231n
Cross Validation

• Used when data set is extremely small and/or our method of choice has low training times

• Partition data into k subsets, train on $k-1$ and evaluate performance on the remaining subset

• To reduce variability: perform on different partitions and average results
Cross Validation

Results for $k=5$

Figure extracted from cs231n
Basic recipe for machine learning
Basic recipe for machine learning

• Split your data

60% 20% 20%
train validation test

Find your hyperparameters
Basic recipe for machine learning

• Split your data

60% 20% 20%
 train validation test

Human level error 1%
Training set error 5%
Val/test set error 8%

Bias (or underfitting)
Variance (overfitting)
Basic recipe for machine learning

- Training error high?
 - Yes: Bigger model, train longer, new model architecture
 - No: Dev error high?
 - Yes: More data, regularization, new model architecture
 - No: Done!

Credits: A. Ng
Next lecture

• This week:
 – Maybe exercise session (see upcoming moodle announcement, NIPS deadline)

• Next lecture on May 21st:
 – Training Neural Networks
See you next week!