
Lecture 5 recap

1
Prof. Leal-Taixé and Prof. Niessner

Neural Network

Depth

W
id

th

2
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent for Neural Networks

Prof. Leal-Taixé and Prof. Niessner 3

!"

!#

!$

ℎ"

ℎ#

ℎ$

ℎ&

'"

'#

("

(#

') = +(-#,) +0
1
ℎ12#,),1)ℎ1 = +(-",1 +0

4
!42",1,4)

5) = ') − () $

78,9:;,< (2) =

=:
=2",","…
…
=:

=2?,@,A…
…
=:
=-?,@

Just simple: + ! = max(0, !)

Stochastic Gradient Descent (SGD)

!"#$ = !" − '()*(!", -{$..0}, 2{$..0})

()* = $
0∑56$

0 ()*5

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner 4

7 now refers to 7-th iteration

8 training samples in the current batch
Gradient for the 7-th batch

Gradient Descent with Momentum

!"#$ = & ⋅ !" +)*+(-")

-"#$ = -" − 0 ⋅ !"#$

Exponentially-weighted average of gradient

Important: velocity !" is vector-valued!

Prof. Leal-Taixé and Prof. Niessner 5

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

Gradient Descent with Momentum

!"#$ = !" − ' ⋅)"#$

Prof. Leal-Taixé and Prof. Niessner 6

Step will be largest when a sequence of

gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are ', +
+ is often set to 0.9

RMSProp

!"#$ = & ⋅ !" + (1 − &)[./0 ∘ ./0]

3"#$ = 3" − 4 ⋅ ./0
!"#$ + 5

Hyperparameters: 4, &, 5

Prof. Leal-Taixé and Prof. Niessner 7

Typically 1078Often 0.9

Element-wise multiplication

Needs tuning!

RMSProp

Prof. Leal-Taixé and Prof. Niessner 8

X-direction
Small gradients

Y-
Di

re
ct

io
n

La
rg

e
gr

ad
ie

nt
s

Fig. credit: A. Ng

!"#$ = & ⋅ !" + (1 − &)[./0 ∘ ./0]

3"#$ = 3" − 4 ⋅ ./0
!"#$ + 5We’re dividing by square gradients:

- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients
-> second momentum

Can increase learning rate!

Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

!"#$ = &$ ⋅ !" + 1 − &$ +,- ."

/"#$ = &0 ⋅ /" + (1 − &0)[+,- ." ∘ +,- ."]

."#$ = ." − 6 ⋅ 789:

;89:#<

Prof. Leal-Taixé and Prof. Niessner 9

First momentum:
mean of gradients

Second momentum:
variance of gradients

Adam

Combines Momentum and RMSProp

!"#$ = &$ ⋅ !" + 1 − &$ +,- ."

/"#$ = &0 ⋅ /" + (1 − &0)[+,- ." ∘ +,- ."]

."#$ = ." − 6 ⋅ 789:;

<=9:;#>

Prof. Leal-Taixé and Prof. Niessner 10

!"#$ and /"#$ are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

7!"#$ = !"

1 − &$

</"#$ = /"
1 − &0

Convergence

11
Prof. Leal-Taixé and Prof. Niessner

Convergence

12
Prof. Leal-Taixé and Prof. Niessner

Importance of Learning Rate

13
Prof. Leal-Taixé and Prof. Niessner

Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND

DERIVATIVE

14
Prof. Leal-Taixé and Prof. Niessner

Newton’s method

• Approximate our function by a second-order Taylor
series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative
(curvature)

15
Prof. Leal-Taixé and Prof. Niessner

Newton’s method

• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!

16
Prof. Leal-Taixé and Prof. Niessner

Newton’s method

• Differentiate and equate to zero

Update step

Parameters

of a network

(millions)

Number of

elements in

the Hessian

Computational

complexity of

‘inversion’ per iteration

17

Prof. Leal-Taixé and Prof. Niessner

Newton’s method

• SGD (green)

• Newton’s method exploits
the curvature to take a
more direct route

Image from Wikipedia
18

Prof. Leal-Taixé and Prof. Niessner

Newton’s method

J(�) = (y � X�)T (y � X�) + �R(�)

Can you apply Newton’s
method for linear

regression? What do you
get as a result?

19
Prof. Leal-Taixé and Prof. Niessner

BFGS and L-BFGS

• Broyden-Fletcher-Goldfarb-Shanno algorithm

• Belongs to the family of quasi-Newton methods

• Have an approximation of the inverse of the Hessian

• BFGS

• Limited memory: L-BFGS

20

Prof. Leal-Taixé and Prof. Niessner

Gauss-Newton
• !"#$ = !" − '(!")$*+(!")

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– '(≈ 201201
• Gauss-Newton (GN):

!"#$ = !" − [201 !" 201 !"])$*+(!")

• Solve linear system (again, inverting a matrix is unstable):
2 01 !" 201 !" !" − !"#$ = *+(!")

Solve for delta vector

Prof. Leal-Taixé and Prof. Niessner 21

Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– !" #$ %!" #$ + ' ⋅) ⋅ #$ − #$+, = ./(#$)

– The damping factor ' is adjusted in each iteration ensuring:
– / #$ > /(#$+,)

• if inequation is not fulfilled increase '
• àTrust region

• à“Interpolation” between Gauss-Newton (small ') and
Gradient Descent (large ')

Tikhonov
regularization

Prof. Leal-Taixé and Prof. Niessner 22

Levenberg-Marquardt

• Levenberg-Marquardt (LM)

!" #$ %!" #$ + ' ⋅)*+,(!" #$ %!" #$) ⋅ #$ − #$01
= 34(#$)

– Instead of a plain Gradient Descent for large ', scale each
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small

gradient

Prof. Leal-Taixé and Prof. Niessner 23

Which, what and when?

• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full
batch updates (doesn’t work well for minibatches!!)

24
Prof. Leal-Taixé and Prof. Niessner

This practically never happens for DL
Theoretically, it would be nice though due to fast convergence

General Optimization
• Linear Systems (Ax = b)

– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS <- second order
– Gradient Descent, SGD <- first order

• Others:
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM,

Primal-Dual, etc.)
Prof. Leal-Taixé and Prof. Niessner 25

Please Remember!

• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!

Prof. Leal-Taixé and Prof. Niessner 26

Importance of Learning Rate

27
Prof. Leal-Taixé and Prof. Niessner

Learning Rate

Prof. Leal-Taixé and Prof. Niessner 28

Need high learning rate when far away Need low learning rate when close

Learning Rate Decay

• ! = #
#$%&'()*(+&⋅&-.'/ ⋅ !0

– E.g., !0 = 0.1, 4567897:5 = 1.0

– > Epoch 0: 0.1
– > Epoch 1: 0.05
– > Epoch 2: 0.033
– > Epoch 3: 0.025

...
Prof. Leal-Taixé and Prof. Niessner 29

0

0,02

0,04

0,06

0,08

0,1

0,12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Learning Rate over Epochs

Learning Rate Decay
Many options:

• Step decay ! = ! − $ ⋅ ! (only every n steps)
– T is decay rate (often 0.5)

• Exponential decay ! = $&'()* ⋅ !+
– t is decay rate (t < 1.0)

• ! = ,
&'()* ⋅ -+

– t is decay rate

• Etc.

Prof. Leal-Taixé and Prof. Niessner 30

Training Schedule

Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs

• How?

– Trial and error (the hard way)

– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

Prof. Leal-Taixé and Prof. Niessner 31

Learning Rate: Implications

• What if too high?

• What if too low?

Prof. Leal-Taixé and Prof. Niessner 32

Training

• Given ground dataset with ground lables

– {"#, %#}
• For instance "#-th training image, with label %#
• Often dim " ≫ dim(%) (e.g., for classification)

• - is often in the 100-thousands or millions

– Take network . and its parameters /, 0

– Use SGD (or variation) to find optimal parameters /, 0
• Gradients from backprop

Prof. Leal-Taixé and Prof. Niessner 33

Learning

• Learning means generalization to unknown dataset
– (so far no ‘real’ learning)
– I.e., train on known dataset -> test with optimized

parameters on unknown dataset

• Basically, we hope that based on the train set, the
optimized parameters will give similar results on
different data (i.e., test data)

Prof. Leal-Taixé and Prof. Niessner 34

Learning

• Training set (‘train’):
– Use for training your neural network

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING

Prof. Leal-Taixé and Prof. Niessner 35

Learning

• Typical splits
– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average mini-batch error
– Typically take subset of validation every n iterations

Prof. Leal-Taixé and Prof. Niessner 36

Learning

• Training graph
- Accuracy - Loss

Prof. Leal-Taixé and Prof. Niessner 37

(EMA smoothing)

Learning

• Validation graph

Prof. Leal-Taixé and Prof. Niessner 38

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 39

Underfitted Appropriate Overfitted

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 40

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Hyperparameters

• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture)
• Batch size
• …
• Overall: learning setup + optimization = hyerparameter

Prof. Leal-Taixé and Prof. Niessner 41

Hyperparameter Tuning

• Methods:

– Manual search: most common J

– Grid search (structured, for ‘real’ applications)

Define ranges for all parameters spaces and select

points (usually pseudo-uniformly distributed). Iterate over

all possible configurations

– Random search:

Like grid search but one picks points at random in the

predefined ranges

Prof. Leal-Taixé and Prof. Niessner 42

Simple Grid Search Example
learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
num_iters = [500, 1000, 1500]
best_val = 0

for learning_rate in learning_rates:
for reg in regularization_strengths:

for iterations in num_iters:
model = train_model(learning_rate, reg., iterations)
validation_accuracy = evaluate(model)
if validation_accuracy > best_val:

best_val = validation_accuracy
best_model = model

Prof. Leal-Taixé and Prof. Niessner 43

Cross Validation

• Example: k=5

Prof. Leal-Taixé and Prof. Niessner 44

Figure extracted from cs231n

Cross Validation

Prof. Leal-Taixé and Prof. Niessner 45

• Used when data set is extremely small and/or our
method of choice has low training times

• Partition data into k subsets, train on k-1 and evaluate
performance on the remaining subset

• To reduce variability: perform on different partitions
and average results

Cross Validation

Prof. Leal-Taixé and Prof. Niessner 46

Results for k=5

Hyperparmeter value

Figure extracted from cs231n

Basic recipe for
machine learning

47

Basic recipe for machine learning

• Split your data

48

Find your hyperparameters

20%

train testvalidation

20%60%

Basic recipe for machine learning

• Split your data

49

20%

train testvalidation

20%60%

Human level error …... 1%

Training set error ….... 5%

Val/test set error ….... 8%

Bias (or underfitting)

Variance
(overfitting)

Basic recipe for machine learning

50Credits: A. Ng
More on

Next lecture

• This week:
– Maybe exercise session (see upcoming moodle

announcement, NIPS deadline)

• Next lecture on May 21st:
– Training Neural Networks

51
Prof. Leal-Taixé and Prof. Niessner

See you next week!

Prof. Leal-Taixé and Prof. Niessner 52

