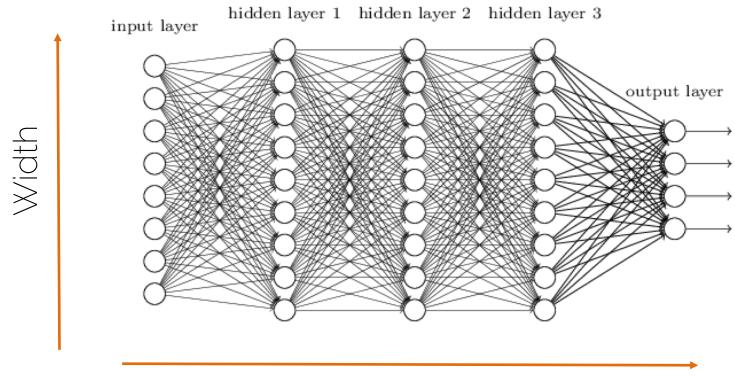


1

Lecture 5 recap

Prof. Leal-Taixé and Prof. Niessner

Neural Network



Gradient Descent for Neural Networks

$$h_{0}$$

$$h_{1}$$

$$y_{0}$$

$$h_{1}$$

$$y_{0}$$

$$h_{1}$$

$$h_{2}$$

$$y_{1}$$

$$h_{1}$$

$$h_{2}$$

$$y_{1}$$

$$h_{1}$$

$$h_{2}$$

$$y_{1}$$

$$h_{1}$$

$$h_{2}$$

$$y_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{2}$$

$$h_{1}$$

$$h_{1}$$

$$h_{1}$$

$$h_{1}$$

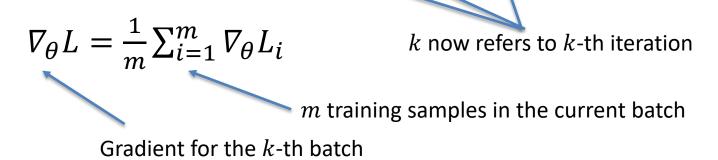
$$h_{2}$$

$$h_{1}$$

$$h_{1$$

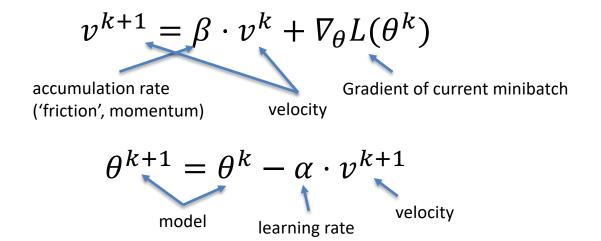
Stochastic Gradient Descent (SGD)

$$\theta^{k+1} = \theta^k - \alpha \nabla_{\theta} L(\theta^k, x_{\{1..m\}}, y_{\{1..m\}})$$



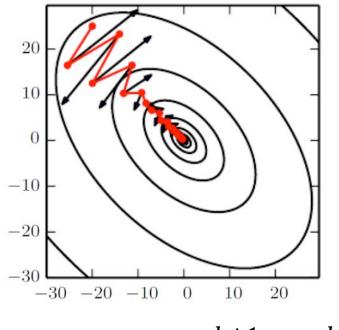
Note the terminology: iteration vs epoch

Gradient Descent with Momentum



Exponentially-weighted average of gradient Important: velocity v^k is vector-valued!

Gradient Descent with Momentum



Step will be largest when a sequence of gradients all point to the same direction

Hyperparameters are α, β β is often set to 0.9

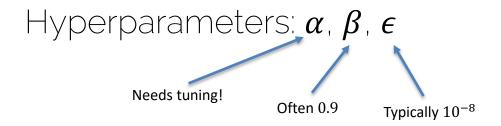
 $\theta^{k+1} = \theta^k - \alpha \cdot v^{k+1}$

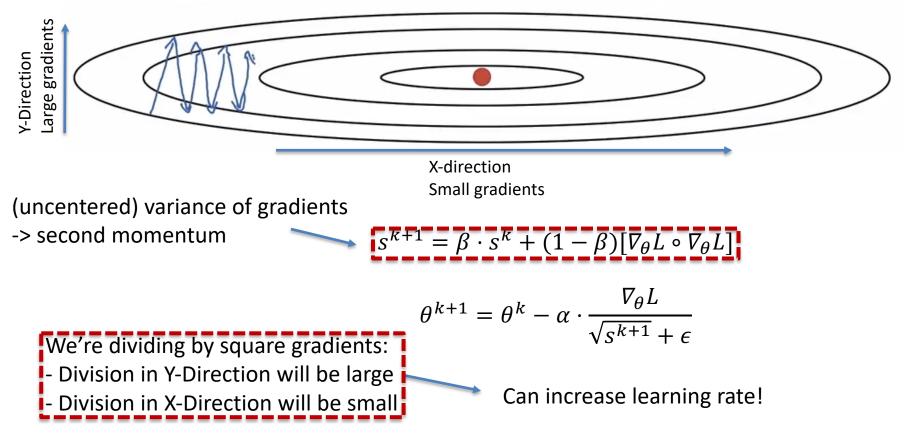
RMSProp

$$s^{k+1} = \beta \cdot s^{k} + (1 - \beta) \left[\nabla_{\theta} L \circ \nabla_{\theta} L \right]$$

$$\theta^{k+1} = \theta^{k} - \alpha \cdot \frac{\nabla_{\theta} L}{\sqrt{s^{k+1}} + \epsilon}$$

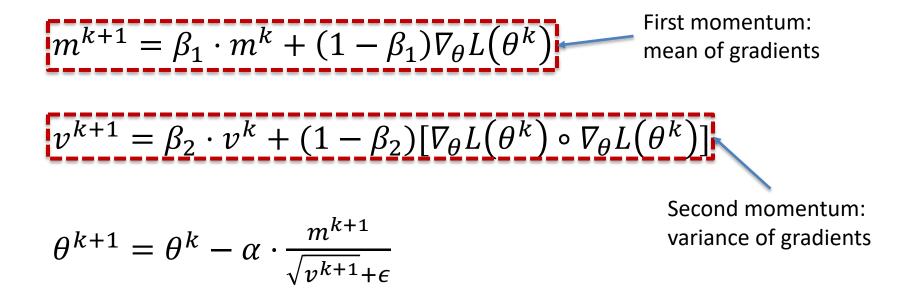
Element-wise multiplication





Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp



Adam

Combines Momentum and RMSProp

$$m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla_{\theta} L(\theta^k)$$

$$v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2) [\nabla_{\theta} L(\theta^k) \circ \nabla_{\theta} L(\theta^k)]$$

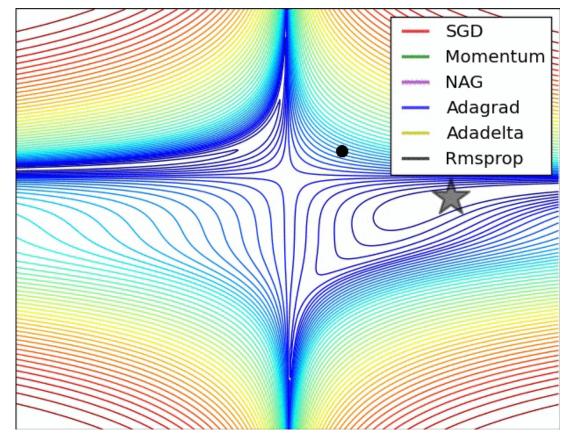
 m^{k+1} and v^{k+1} are initialized with zero -> bias towards zero

Typically, bias-corrected moment updates

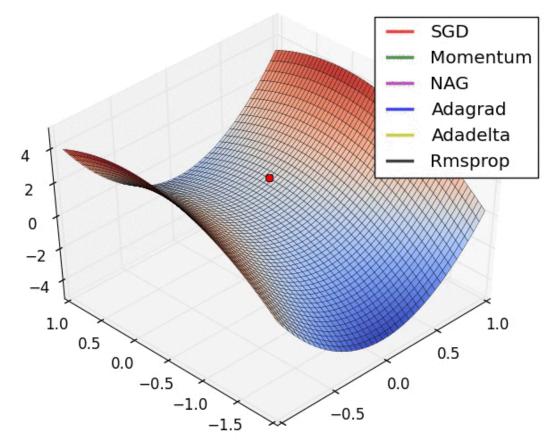
 $\widehat{m}^{k+1} = \frac{m^k}{1 - \beta_1}$

$$\theta^{k+1} = \theta^k - \alpha \cdot \frac{\hat{m}^{k+1}}{\sqrt{\hat{v}^{k+1}} + \epsilon} \qquad \qquad \hat{v}^{k+1} = \frac{v^k}{1 - \beta_2}$$

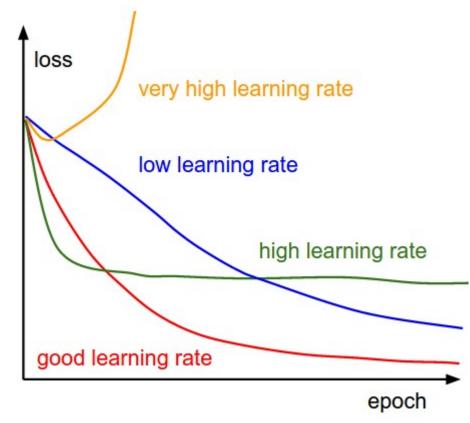
Convergence



Convergence



Importance of Learning Rate



Jacobian and Hessian

- Derivative $\mathbf{f} : \mathbb{R} \to \mathbb{R}$ $\frac{df(x)}{dx}$ • Gradient $\mathbf{f} : \mathbb{R}^m \to \mathbb{R}$ $\nabla_{\mathbf{x}} f(\mathbf{x})$ $\left(\frac{df(x)}{dx_1}, \frac{df(x)}{dx_2}\right)$
- Jacobian $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n \quad \mathbf{J} \in \mathbb{R}^{n \times m}$

• Hessian $\mathbf{f}: \mathbb{R}^m \to \mathbb{R} \quad \mathbf{H} \in \mathbb{R}^{m \times m}$

• Approximate our function by a second-order Taylor series expansion

$$\begin{split} L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0) \\ & \swarrow \\ & \swarrow \\ & \mathsf{First \ derivative} \\ & \mathsf{Second \ derivative} \\ & \mathsf{(curvature)} \end{split}$$

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

We got rid of the learning rate!

SGD
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Parameters of a network (millions)

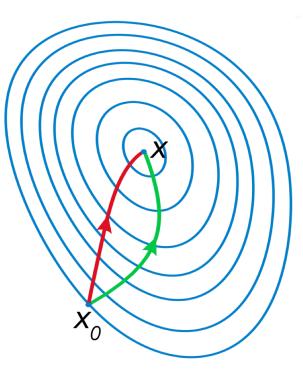
k

Number of elements in the Hessian k^2

Computational complexity of 'inversion' per iteration $\mathcal{O}(k^3)$

• SGD (green)

 Newton's method exploits the curvature to take a more direct route



$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Can you apply Newton's method for linear regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- BFGS $\mathcal{O}(n^2)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Gauss-Newton

- $x_{k+1} = x_k H_f(x_k)^{-1} \nabla f(x_k)$
 - 'true' 2nd derivatives are often hard to obtain (e.g., numerics)
 - $H_f \approx 2J_F^T J_F$
- Gauss-Newton (GN):

$$x_{k+1} = x_k - [2J_F(x_k)^T J_F(x_k)]^{-1} \nabla f(x_k)$$

• Solve linear system (again, inverting a matrix is unstable): $2(J_F(x_k)^T J_F(x_k))(x_k - x_{k+1}) = \nabla f(x_k)$

Solve for delta vector

Levenberg

- Levenberg
 - "damped" version of Gauss-Newton:
 - $(J_F(x_k)^T J_F(x_k) + \lambda \cdot I) \cdot (x_k x_{k+1}) = \nabla f(x_k)$

Tikhonov regularization

– The damping factor λ is adjusted in each iteration ensuring:

$$f(x_k) > f(x_{k+1})$$

- if inequation is not fulfilled increase λ
- →Trust region
- \rightarrow "Interpolation" between Gauss-Newton (small λ) and Gradient Descent (large λ)

Levenberg-Marquardt

• Levenberg-Marquardt (LM)

$$(J_F(x_k)^T J_F(x_k) + \lambda \cdot diag(J_F(x_k)^T J_F(x_k))) \cdot (x_k - x_{k+1})$$

= $\nabla f(x_k)$

- Instead of a plain Gradient Descent for large λ , scale each component of the gradient according to the curvature.
 - Avoids slow convergence in components with a small gradient

Which, what and when?

• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch updates (doesn't work well for minibatches!!)

This practically never happens for DL Theoretically, it would be nice though due to fast convergence

General Optimization

- Linear Systems (Ax = b)
 LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.
- Non-linear (gradient-based)
 - Newton, Gauss-Newton, LM, (L)BFGS <- second order
 - Gradient Descent, SGD <- first order
- Others:
 - Genetic algorithms, MCMC, Metropolis-Hastings, etc.
 - Constrained and convex solvers (Langrage, ADMM, Primal-Dual, etc.)

Please Remember!

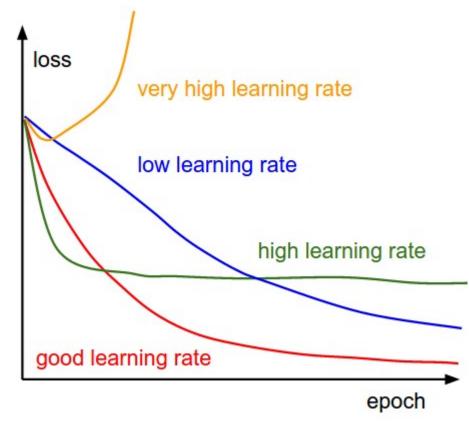
• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

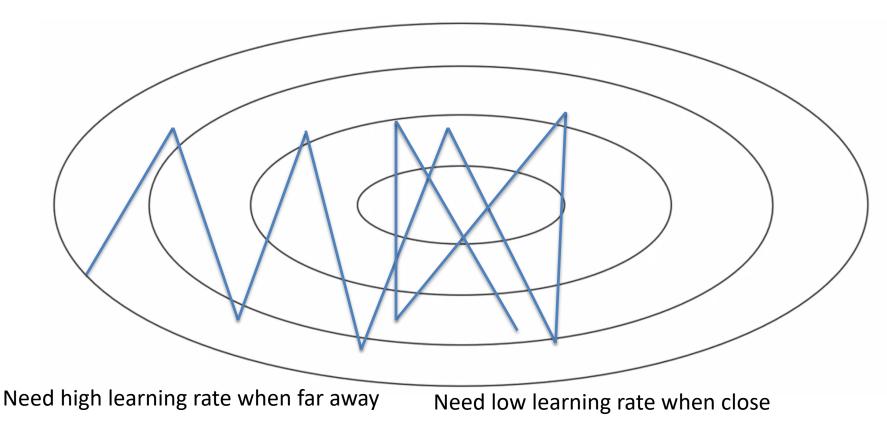
• When you can, use 2nd order method -> it's just faster

• GD or SGD is **not** a way to solve a linear system!

Importance of Learning Rate



Learning Rate



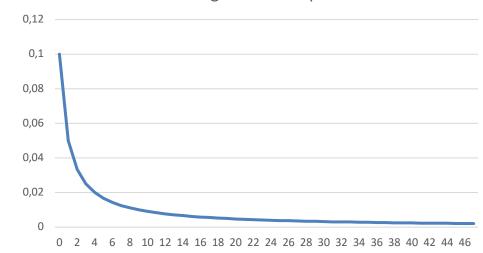
Learning Rate Decay

•
$$\alpha = \frac{1}{1 + decayrate \cdot epoch} \cdot \alpha_0$$

– E.g.,
$$lpha_0=0.1$$
, $decayrate=1.0$

Learning Rate over Epochs

- > Epoch O: 0.1
- > Epoch 1: 0.05
- > Epoch 2: 0.033
- > Epoch 3: 0.025



...

Learning Rate Decay

Many options:

- Step decay α = α t · α (only every n steps)
 T is decay rate (often 0.5)
- Exponential decay $\alpha = t^{epoch} \cdot \alpha_0$ - t is decay rate (t < 1.0)

•
$$\alpha = \frac{t}{\sqrt{epoch}} \cdot a_0$$

- t is decay rate

• Etc.

Training Schedule

Manually specify learning rate for entire training process

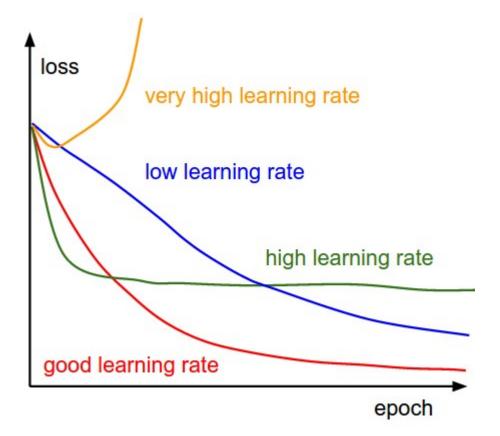
- Manually set learning rate every n-epochs
- How?
 - Trial and error (the hard way)
 - Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.

Learning Rate: Implications

• What if too high?

• What if too low?



Training

- Given ground dataset with ground lables
 - $\{x_i, y_i\}$
 - For instance x_i -th training image, with label y_i
 - Often $\dim(x) \gg \dim(y)$ (e.g., for classification)
 - *i* is often in the 100-thousands or millions
 - Take network *f* and its parameters *w*, *b*
 - Use SGD (or variation) to find optimal parameters w, b
 - Gradients from backprop

Learning

- Learning means generalization to unknown dataset
 - (so far no 'real' learning)
 - I.e., train on known dataset -> test with optimized parameters on unknown dataset

• Basically, we hope that based on the train set, the optimized parameters will give similar results on different data (i.e., test data)

Learning

- Training set ('*train*'):
 - Use for training your neural network
- Validation set ('*val*'):
 - Hyperparameter optimization
 - Check generalization progress
- Test set ('*test*'):
 - Only for the very end
 - NEVER TOUCH DURING DEVELOPMENT OR TRAINING

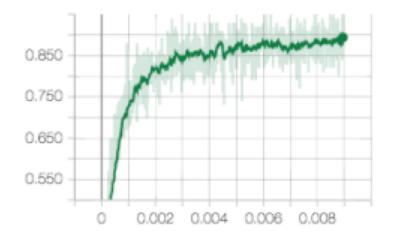
Learning

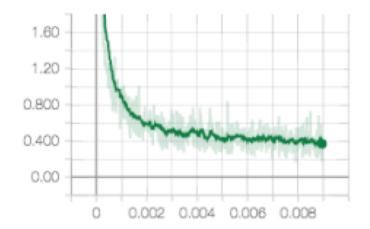
- Typical splits
 - Train (60%), Val (20%), Test (20%)
 - Train (80%), Val (10%), Test (10%)

- During training:
 - Train error comes from average mini-batch error
 - Typically take subset of validation every n iterations

Learning

Training graph
 Accuracy

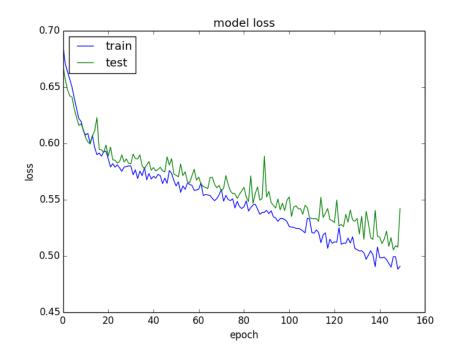




(EMA smoothing)

Learning

• Validation graph



Over- and Underfitting

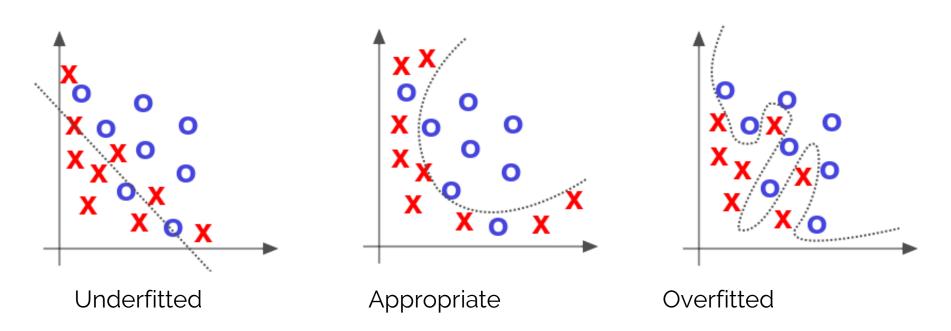
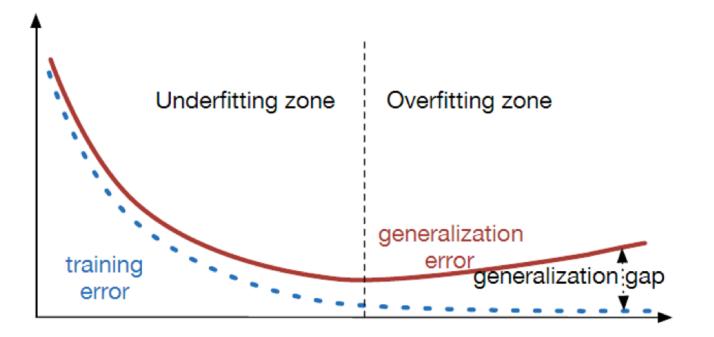


Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O'Reily Media Inc., 2017

Over- and Underfitting



Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Hyperparameters

- Network architecture (e.g., num layers, #weights)
- Number of iterations
- Learning rate(s) (i.e., solver parameters, decay, etc.)
- Regularization (more later next lecture)
- Batch size
- Overall: learning setup + optimization = hyerparameter

Hyperparameter Tuning

- Methods:
 - Manual search: most common 🕲
 - Grid search (structured, for 'real' applications)

Define ranges for all parameters spaces and select points (usually pseudo-uniformly distributed). Iterate over all possible configurations

- Random search:

Like grid search but one picks points at random in the predefined ranges

Simple Grid Search Example

```
learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
num_iters = [500, 1000, 1500]
best_val = 0
```

for learning_rate in learning_rates: for reg in regularization_strengths: for iterations in num_iters: model = train_model(learning_rate, reg., iterations) validation_accuracy = evaluate(model) if validation_accuracy > best_val: best_val = validation_accuracy best_model = model

Cross Validation

• Example: k=5

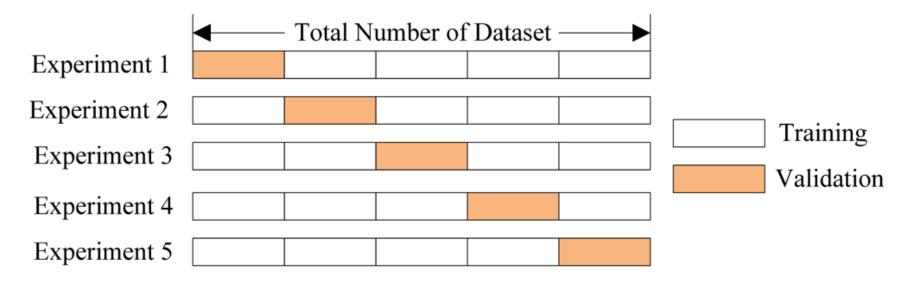


Figure extracted from cs231n

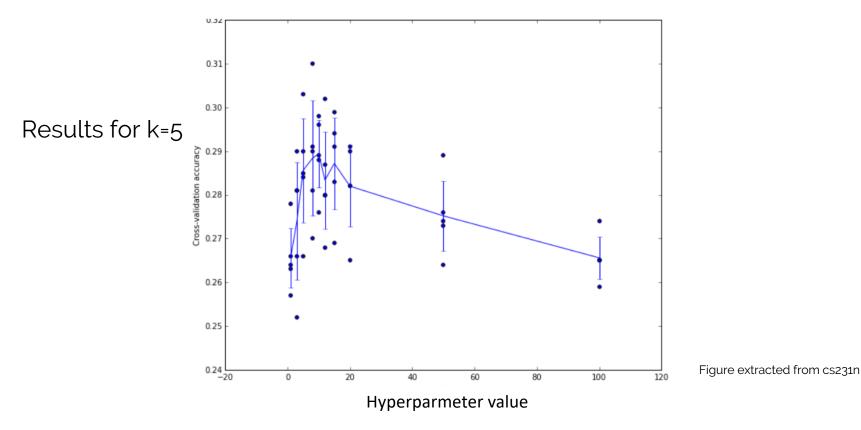
Cross Validation

• Used when data set is extremely small and/or our method of choice has low training times

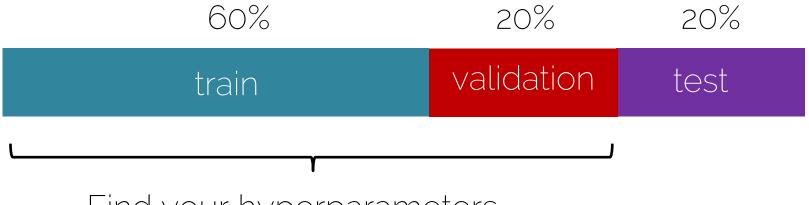
• Partition data into k subsets, train on k-1 and evaluate performance on the remaining subset

• To reduce variability: perform on different partitions and average results

Cross Validation



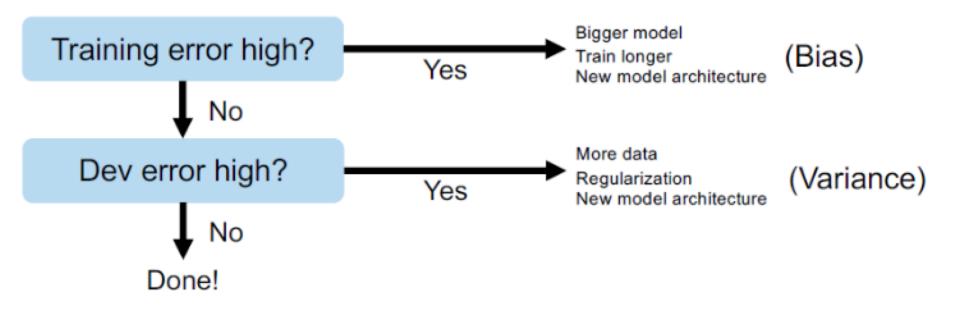
• Split your data



Find your hyperparameters

• Split your data

Human level error 1%	<i>Bias</i> (or underfitting)
Training set error 5%	
Val/test set error 8%	<i>Variance</i> (overfitting)



Next lecture

- This week:
 - Maybe exercise session (see upcoming moodle announcement, NIPS deadline)

- Next lecture on May 21st:
 - Training Neural Networks

See you next week!