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Gradient Descent for Neural Networks
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Stochastic Gradient Descent (SGD)

!"#$ = !" − '()*(!", -{$..0}, 2{$..0})

()* = $
0∑56$

0 ()*5

Note the terminology: iteration vs epoch
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7 now refers to 7-th iteration 

8 training samples in the current batch
Gradient for the 7-th batch 



Gradient Descent with Momentum

!"#$ = & ⋅ !" + )*+(-")

-"#$ = -" − 0 ⋅ !"#$

Exponentially-weighted average of gradient

Important: velocity !" is vector-valued!
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Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel



Gradient Descent with Momentum

!"#$ = !" − ' ⋅ )"#$
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Step will be largest when a sequence of 

gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are ', +
+ is often set to 0.9



RMSProp

!"#$ = & ⋅ !" + (1 − &)[./0 ∘ ./0]

3"#$ = 3" − 4 ⋅ ./0
!"#$ + 5

Hyperparameters: 4, &, 5
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Typically 1078Often 0.9

Element-wise multiplication

Needs tuning!



RMSProp
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Fig. credit: A. Ng

!"#$ = & ⋅ !" + (1 − &)[./0 ∘ ./0]

3"#$ = 3" − 4 ⋅ ./0
!"#$ + 5We’re dividing by square gradients:

- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients 
-> second momentum

Can increase learning rate!



Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

!"#$ = &$ ⋅ !" + 1 − &$ +,- ."

/"#$ = &0 ⋅ /" + (1 − &0)[+,- ." ∘ +,- ." ]

."#$ = ." − 6 ⋅ 789:

;89:#<
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First momentum: 
mean of gradients

Second momentum: 
variance of gradients



Adam

Combines Momentum and RMSProp

!"#$ = &$ ⋅ !" + 1 − &$ +,- ."

/"#$ = &0 ⋅ /" + (1 − &0)[+,- ." ∘ +,- ." ]

."#$ = ." − 6 ⋅ 789:;

<=9:;#>

Prof. Leal-Taixé and Prof. Niessner 10

!"#$ and /"#$ are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

7!"#$ = !"

1 − &$

</"#$ = /"
1 − &0



Convergence
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Convergence
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Importance of Learning Rate
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Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND 

DERIVATIVE
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Newton’s method

• Approximate our function by a second-order Taylor 
series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative 
(curvature)
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Newton’s method

• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!
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Newton’s method

• Differentiate and equate to zero

Update step

Parameters 

of a network 

(millions)

Number of 

elements in 

the Hessian

Computational 

complexity of 

‘inversion’ per iteration
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Newton’s method

• SGD (green)

• Newton’s method exploits 
the curvature to take a 
more direct route

Image from Wikipedia
18
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Newton’s method

J(�) = (y � X�)T (y � X�) + �R(�)

Can you apply Newton’s 
method for linear 

regression? What do you 
get as a result?
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BFGS and L-BFGS

• Broyden-Fletcher-Goldfarb-Shanno algorithm

• Belongs to the family of quasi-Newton methods

• Have an approximation of the inverse of the Hessian

• BFGS

• Limited memory: L-BFGS

20
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Gauss-Newton
• !"#$ = !" − '( !" )$*+(!")

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– '( ≈ 201201
• Gauss-Newton (GN): 

!"#$ = !" − [201 !" 201 !" ])$*+(!")

• Solve linear system (again, inverting a matrix is unstable):
2 01 !" 201 !" !" − !"#$ = *+(!")

Solve for delta vector
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Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
– !" #$ %!" #$ + ' ⋅ ) ⋅ #$ − #$+, = ./(#$)

– The damping factor ' is adjusted in each iteration ensuring:
– / #$ > /(#$+,)

• if inequation is not fulfilled increase '
• àTrust region

• à“Interpolation” between Gauss-Newton (small ') and 
Gradient Descent (large ')

Tikhonov
regularization
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Levenberg-Marquardt

• Levenberg-Marquardt (LM)

!" #$ %!" #$ + ' ⋅ )*+,(!" #$ %!" #$ ) ⋅ #$ − #$01
= 34(#$)

– Instead of a plain Gradient Descent for large ', scale each 
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small 

gradient
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Which, what and when?

• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full 
batch updates (doesn’t work well for minibatches!!)
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This practically never happens for DL
Theoretically, it would be nice though due to fast convergence



General Optimization
• Linear Systems (Ax = b)

– LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.

• Non-linear (gradient-based)
– Newton, Gauss-Newton, LM, (L)BFGS <- second order
– Gradient Descent, SGD <- first order

• Others:
– Genetic algorithms, MCMC, Metropolis-Hastings, etc.
– Constrained and convex solvers (Langrage, ADMM, 

Primal-Dual, etc.)
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Please Remember!

• Think about your problem and optimization at hand 

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!
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Importance of Learning Rate
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Learning Rate  
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Need high learning rate when far away Need low learning rate when close



Learning Rate Decay

• ! = #
#$%&'()*(+&⋅&-.'/ ⋅ !0

– E.g., !0 = 0.1, 4567897:5 = 1.0

– > Epoch 0: 0.1
– > Epoch 1: 0.05
– > Epoch 2: 0.033
– > Epoch 3: 0.025

...
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Learning Rate Decay
Many options:

• Step decay ! = ! − $ ⋅ ! (only every n steps)
– T is decay rate (often 0.5)

• Exponential decay ! = $&'()* ⋅ !+
– t is decay rate (t < 1.0)

• ! = ,
&'()* ⋅ -+

– t is decay rate 

• Etc.
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Training Schedule

Manually specify learning rate for entire training process

• Manually set learning rate every n-epochs

• How? 

– Trial and error (the hard way)

– Some experience (only generalizes to some degree)

Consider: #epochs, training set size, network size, etc.
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Learning Rate: Implications

• What if too high?

• What if too low?
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Training

• Given ground dataset with ground lables

– {"#, %#}
• For instance "#-th training image, with label %#
• Often dim " ≫ dim(%) (e.g., for classification)

• - is often in the 100-thousands or millions

– Take network . and its parameters /, 0

– Use SGD (or variation) to find optimal parameters /, 0
• Gradients from backprop

Prof. Leal-Taixé and Prof. Niessner 33



Learning

• Learning means generalization to unknown dataset
– (so far no ‘real’ learning)
– I.e., train on known dataset -> test with optimized 

parameters on unknown dataset

• Basically, we hope that based on the train set, the 
optimized parameters will give similar results on 
different data (i.e., test data)
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Learning

• Training set (‘train’):
– Use for training your neural network  

• Validation set (‘val’):
– Hyperparameter optimization
– Check generalization progress

• Test set (‘test’):
– Only for the very end
– NEVER TOUCH DURING DEVELOPMENT OR TRAINING
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Learning

• Typical splits
– Train (60%), Val (20%), Test (20%)
– Train (80%), Val (10%), Test (10%)

• During training:
– Train error comes from average mini-batch error
– Typically take subset of validation every n iterations
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Learning

• Training graph
- Accuracy - Loss
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(EMA smoothing)



Learning

• Validation graph
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Over- and Underfitting
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Underfitted Appropriate Overfitted

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017



Over- and Underfitting
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Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html



Hyperparameters

• Network architecture (e.g., num layers, #weights)
• Number of iterations
• Learning rate(s) (i.e., solver parameters, decay, etc.)
• Regularization (more later next lecture) 
• Batch size
• …
• Overall: learning setup + optimization = hyerparameter
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Hyperparameter Tuning

• Methods:

– Manual search: most common J

– Grid search (structured, for ‘real’ applications)

Define ranges for all parameters spaces and select 

points (usually pseudo-uniformly distributed). Iterate over 

all possible configurations

– Random search:

Like grid search but one picks points at random in the 

predefined ranges
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Simple Grid Search Example
learning_rates = [1e-2, 1e-3, 1e-4, 1e-5]
regularization_strengths = [1e2, 1e3, 1e4, 1e5]
num_iters = [500, 1000, 1500]
best_val = 0

for learning_rate in learning_rates:
for reg in regularization_strengths:

for iterations in num_iters:
model = train_model(learning_rate, reg., iterations)
validation_accuracy = evaluate(model)
if validation_accuracy > best_val:

best_val = validation_accuracy
best_model = model
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Cross Validation

• Example: k=5
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Figure extracted from cs231n



Cross Validation
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• Used when data set is extremely small and/or our 
method of choice has low training times

• Partition data into k subsets, train on k-1 and evaluate 
performance on the remaining subset

• To reduce variability: perform on different partitions 
and average results



Cross Validation
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Results for k=5

Hyperparmeter value

Figure extracted from cs231n



Basic recipe for 
machine learning
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Basic recipe for machine learning

• Split your data

48

Find your hyperparameters

20%

train testvalidation

20%60%



Basic recipe for machine learning

• Split your data
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20%

train testvalidation

20%60%

Human level error …... 1%

Training set error   ….... 5%

Val/test set error  ….... 8%

Bias (or underfitting)

Variance 
(overfitting)



Basic recipe for machine learning

50Credits: A. Ng
More on 



Next lecture

• This week:
– Maybe exercise session (see upcoming moodle

announcement, NIPS deadline)

• Next lecture on May 21st: 
– Training Neural Networks
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See you next week!
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