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Neural Network

Credit: Li/Karpathy/Johnson
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Compute Graphs -> Neural Networks
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𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

e.g., class label / regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

-𝑡0+ x*x

Input Weights
(unknowns!)

L2 Loss
function

Loss/cost

We want to compute gradients w.r.t. all weights w

max(0, 𝑥)

ReLU Activation
(btw. I’m not arguing
this is the right choice here)



Compute Graphs -> Neural Networks
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𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

𝑦1

𝑦2

𝑡1

𝑡2

𝑥0

𝑥1

∗ 𝑤0,0

-𝑡0+ x*x

Loss/cost

-𝑡1+ x*x

Loss/cost

∗ 𝑤0,1

∗ 𝑤1,0

∗ 𝑤1,1

-𝑡2+ x*x

Loss/cost∗ 𝑤2,0

∗ 𝑤2,1

We want to compute gradients w.r.t. all weights w



Compute Graphs -> Neural Networks
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𝑥0

𝑥𝑘

𝑦0 𝑡0

Input layer Output layer

𝑦1 𝑡1

…

𝑦𝑖 = 𝐴(𝑏𝑖 +

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝐿 =

𝑖

𝐿𝑖

We want to compute gradients w.r.t. all weights w

L2 loss -> simply sum up squares
Energy to minimize is E=L

Activation function bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕𝑦𝑖
⋅
𝜕𝑦𝑖
𝜕𝑤𝑖,𝑘

-> use chain rule to compute partials



Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t. weights (unknowns)

• Next
– Find weights based on gradients
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Gradient step:
𝑤′ = 𝑤 − 𝛼𝛻𝑤𝑓𝑥,𝑦 (𝑤)

𝛻𝑤𝑓𝑥,𝑦 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚



Optimization
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Gradient Descent

Optimum

Initialization
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Gradient Descent

Optimum

Initialization
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Gradient Descent

Optimum

Initialization

Follow the 
slope of the 
DERIVATIVE
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

Learning rate
13
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

SMALL Learning rate
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

LARGE Learning rate
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Gradient Descent

Optimum

Initialization

What is the 
gradient when 
we reach this 
point?

Not guaranteed 
to reach the 

optimum 16
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Convergence of Gradient Descent
• Convex function: all local minima are global minima
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If line/plane segment between any two points lies above or on the graph



Convergence of Gradient Descent
• Neural networks are non-convex

– > many (different) local minima
– > no (practical) way which is globally optimal
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Convergence of Gradient Descent
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Convergence of Gradient Descent
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Gradient Descent: Multiple Dimensions
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Various ways to visualize…



Gradient Descent: Multiple Dimensions
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Gradient Descent for Neural Networks
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𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤,𝑏𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)



Gradient Descent: Single Training Sample
• Given a neural network function 𝐿
• Single training sample (𝑥𝑖 , 𝑦𝑖)
• Find best model parameters 𝜃 = 𝑤, 𝑏

• Cost 𝐿𝑖 𝜃, 𝑥𝑖 , 𝑦𝑖
– 𝜃 = argmin 𝐿𝑖(𝑥𝑖 , 𝑦𝑖)

• Gradient Descent:
– Initialize 𝜃1 with ‘random’ values (more to that later)

– 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿𝑖(𝜃, 𝑥𝑖 , 𝑦𝑖)

– Iterate until convergence: 𝜃𝑘+1 − 𝜃𝑘 < 𝜖

Prof. Leal-Taixé and Prof. Niessner 24



Gradient Descent: Single Training Sample

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿𝑖(𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖)

𝛻𝜃𝐿𝑖 𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖 computed via backpropagation 

for typical network dim 𝛻𝜃𝐿𝑖 𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖 = dim 𝜃 ≫ 1𝑚𝑖𝑜
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Weights, biases at step k
(prev. step)

Weights, biases at step k
(new params. after step) Learning rate

Gradient w.r.t. 𝜃

Training sample {𝑥𝑖 , 𝑦𝑖}

Loss Function

curr. model



Gradient Descent: Multiple Training Samples

• Given a neural network function 𝐿
• Multiple (𝑛) training samples (𝑥𝑖 , 𝑦𝑖)
• Find best model parameters 𝜃 = 𝑤, 𝑏

• Cost 𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜃, 𝑥𝑖 , 𝑦𝑖)

– 𝜃 = argmin 𝐿

Prof. Leal-Taixé and Prof. Niessner 26



Gradient Descent: Multiple Training Samples

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃
𝑘 , 𝑥{1..𝑛}, 𝑦{1..𝑛})

𝛻𝜃𝐿 𝜃𝑘 , 𝑥 1..𝑛 , 𝑦 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜃𝐿𝑖 𝜃

𝑘 , 𝑥𝑖 , 𝑦𝑖

often people are lazy and just write:
𝛻𝐿 = σ𝑖=1

𝑛 𝛻𝜃𝐿𝑖

omitting 1
𝑛

is not ‘wrong’, it just means rescaling the learning rate
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Reminder: this comes from backprop.

Gradient is average / sum
over residuals



Side Note: Optimal Learning Rate
Can compute optimal learning rate 𝛼 using Line Search

(optimal for a given set)

1. Compute gradient: 𝛻𝜃𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜃𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜃𝑘 − 𝛼 𝛻𝜃𝐿)

3. 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿
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𝜃𝑘+1

Not that practical for DL since 
we need to solve huge system every step…



Gradient Descent on Train Set
• Given large train set with (𝑛) training samples (𝑥𝑖 , 𝑦𝑖)

– Let’s say 1 mio labeled images
– Let’s say our network has 500k parameters 

• Gradient has 500k dimensions
• 𝑛 = 1𝑚𝑖𝑜

-> Extremely expensive to compute

Prof. Leal-Taixé and Prof. Niessner 29



Remember: Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

What is the size 
of the Jacobian?

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Assuming input and output ∈ ℝ4096

𝑥 ∈ ℝ4096

𝑧 ∈ ℝ4096

dim J = 4096 × 4096

Prof. Leal-Taixé and Prof. Niessner 30



Remember: Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

How efficient is that:
- dim J = 4096 × 4096 = 16.78mio
- Assuming floats (i.e., 4 bytes / elem)
- -> 64 MB

Typically, networks are run in batches:
- Assuming mini-batch size of 16 
- -> dim J = 16 ⋅ 4096 × 16 ⋅ 4096 = 4295 mio
- -> 16.384MB = 16GB

How to handle this?

Prof. Leal-Taixé and Prof. Niessner 31



Stochastic Gradient Descent (SGD)
• If we have 𝑛 training samples we need to compute 

the gradient for all of them which is 𝑂(𝑛)

• Gradient is an expectation, and so it can be 
approximated with a small number of samples

Minibatch: choose subset of trainset 𝑚 ≪ 𝑛
𝐵𝑖 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}

Prof. Leal-Taixé and Prof. Niessner 32



Stochastic Gradient Descent (SGD)
• Minibatch size is hyperparameter

– Typically power of 2 -> 8, 16, 32, 64, 128…
– Mostly limited by GPU memory (in backprop pass)
– E.g., 

• Train set has n = 220 (about 1 mio) images
• Assume batch size of m = 64

• 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches

Epoch = complete pass through training set

Prof. Leal-Taixé and Prof. Niessner 33



Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner 34

𝑘 now refers to 𝑘-th iteration 

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch 



Stochastic Gradient Descent (SGD)
• Convergence of stochastic gradient descent 

– σ𝑖=1
∞ 𝛼𝑖 = ∞

– σ𝑖=1
∞ 𝛼𝑖

2 < ∞

• When to update learning rate (learning rate decay)
– Start high, reduce over time
– Reduce every iteration, or have fixed training schedule (empirical)

• Learning rate decreasing strategies
– Many strategies 

Prof. Leal-Taixé and Prof. Niessner 35

Lots of literature: Robbins-Monro condition
There are some ‘easy’ intuitions though…



Problems of SGD
• Gradient is scaled equally across all dimensions

– > I.e., cannot independently scale directions
– > need to have conservative min learning rate to avoid 

divergence 
– > Slower than ‘necessary’

• Finding good learning rate is an art by itself
– > More next lecture
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Gradient Descent with Momentum
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We’re making many steps back 
and forth along this dimension. 
Would love to track that this is 
averaging out over time.

Would love to go faster here…
I.e., accumulated gradients over time

Fig. credit: A. Ng



Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!

Prof. Leal-Taixé and Prof. Niessner 38

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel



Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 39

Step will be largest when a sequence of 
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9



Gradient Descent with Momentum
• Can it overcome local minima?

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 40



Nesterov’s Momentum
• Look-ahead momentum

෨𝜃𝑘+1 = 𝜃𝑘 − 𝑣𝑘

𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿( ෨𝜃
𝑘+1)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 41
Sutskever 2013, Nesterov 1983



Nesterov’s Momentum

Prof. Leal-Taixé and Prof. Niessner 42Fig. credit G. Hinton

෨𝜃𝑘+1 = 𝜃𝑘 + 𝑣𝑘
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿( ෨𝜃

𝑘+1)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1



Root Mean Squared Prop (RMSProp)

• RMSprop divides the learning rate by an 
exponentially-decaying average of squared gradients.

Prof. Leal-Taixé and Prof. Niessner 43

Small gradients
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Fig. credit: A. Ng



RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Prof. Leal-Taixé and Prof. Niessner 44

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!



RMSProp

Prof. Leal-Taixé and Prof. Niessner 45

X-direction
Small gradients

Y-
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Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients 
-> second momentum

Can increase learning rate!



RMSProp

• Dampening the oscillations for high-variance 
directions

• Can use faster learning rate because it is less likely to 
diverge
– > Speed up learning speed
– > Second moment

Prof. Leal-Taixé and Prof. Niessner 46



Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 47

First momentum: 
mean of gradients

Second momentum: 
variance of gradients



Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖
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𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2



Adam
• Exponentially-decaying mean and variance of 

gradients (combines first and second order 
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖

Prof. Leal-Taixé and Prof. Niessner 49

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Typically 10−8Often 0.9

Often 0.999

Defaults in Pytorch

Needs tuning!



There are a couple of others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ….
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E.g., AdaGrad Update
• Adapt the learning rate of all model parameters

Small constant for 
numerical stability

Learning rate

53
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E.g., AdaGrad Update
• Theory: more progress in regions where the function 

is more flat

• Practice: for most deep learning models, 
accumulating gradients from the beginning results in 
excessive decrease in the effective learning rate

54
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There are a couple of others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ….

Prof. Leal-Taixé and Prof. Niessner 55

Adam is mostly method 
of choice for neural networks!

It’s actually fun to play around with SGD updates.
It’s easy and get pretty immediate feedback 



Some References to SGD Updates
• http://ruder.io/optimizing-gradient-

descent/index.html#rmsprop

• TesnorFlow Docu: 
https://www.tensorflow.org/api_docs/python/tf/trai
n/MomentumOptimizer (and respective others)

• PyTorch Docu: 
https://pytorch.org/docs/master/optim.html
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http://ruder.io/optimizing-gradient-descent/index.html#rmsprop
https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer
https://pytorch.org/docs/master/optim.html


Convergence
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Convergence
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TODO continue here
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Importance of Learning Rate
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Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND 

DERIVATIVE

61
Prof. Leal-Taixé and Prof. Niessner



Newton’s method
• Approximate our function by a second-order Taylor 

series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative 
(curvature)
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Newton’s method
• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!
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Newton’s method
• Differentiate and equate to zero

Update step

Parameters 
of a network 

(millions)

Number of 
elements in 
the Hessian

Computational 
complexity of 

‘inversion’ per iteration
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Newton’s method
• SGD (green)

• Newton’s method exploits 
the curvature to take a 
more direct route

Image from Wikipedia
65

Prof. Leal-Taixé and Prof. Niessner



Newton’s method

Can you apply Newton’s 
method for linear 

regression? What do you 
get as a result?
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BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS
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Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 − 𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN): 
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is unstable):
2 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector
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Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each 
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small 

gradient
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Which, what and when?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch 
updates (doesn’t work well for minibatches!!)
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This practically never happens for DL
Theoretically, it would be nice though due to fast convergence



Please Remember!
• Think about your problem and optimization at hand 

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!
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Next lecture

• This week:
– No tutorial on Thursday due to Holiday!

• Next lecture on May 14th: 
– More on optimization of neural networks
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See you next week!
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