
Lecture 4 recap

1
Prof. Leal-Taixé and Prof. Niessner

Neural Network

Credit: Li/Karpathy/Johnson

2
Prof. Leal-Taixé and Prof. Niessner

Neural Network

Depth

W
id

th

3
Prof. Leal-Taixé and Prof. Niessner

Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

1

−2

44

−2

𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑑
⋅
𝜕𝑑

𝜕𝑥

Chain Rule:

→
𝜕𝑓

𝜕𝑥
= 4 ⋅ 1 = 4

𝜕𝑓

𝜕𝑥

4

4

4

Prof. Leal-Taixé and Prof. Niessner 4

Compute Graphs -> Neural Networks

Prof. Leal-Taixé and Prof. Niessner 5

𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

e.g., class label / regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

-𝑡0+ x*x

Input Weights
(unknowns!)

L2 Loss
function

Loss/cost

We want to compute gradients w.r.t. all weights w

max(0, 𝑥)

ReLU Activation
(btw. I’m not arguing
this is the right choice here)

Compute Graphs -> Neural Networks

Prof. Leal-Taixé and Prof. Niessner 6

𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

𝑦1

𝑦2

𝑡1

𝑡2

𝑥0

𝑥1

∗ 𝑤0,0

-𝑡0+ x*x

Loss/cost

-𝑡1+ x*x

Loss/cost

∗ 𝑤0,1

∗ 𝑤1,0

∗ 𝑤1,1

-𝑡2+ x*x

Loss/cost∗ 𝑤2,0

∗ 𝑤2,1

We want to compute gradients w.r.t. all weights w

Compute Graphs -> Neural Networks

Prof. Leal-Taixé and Prof. Niessner 7

𝑥0

𝑥𝑘

𝑦0 𝑡0

Input layer Output layer

𝑦1 𝑡1

…

𝑦𝑖 = 𝐴(𝑏𝑖 +

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝐿 =

𝑖

𝐿𝑖

We want to compute gradients w.r.t. all weights w

L2 loss -> simply sum up squares
Energy to minimize is E=L

Activation function bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕𝑦𝑖
⋅
𝜕𝑦𝑖
𝜕𝑤𝑖,𝑘

-> use chain rule to compute partials

Summary
• We have

– (Directional) compute graph
– Structure graph into layers
– Compute partial derivatives w.r.t. weights (unknowns)

• Next
– Find weights based on gradients

Prof. Leal-Taixé and Prof. Niessner 8

Gradient step:
𝑤′ = 𝑤 − 𝛼𝛻𝑤𝑓𝑥,𝑦 (𝑤)

𝛻𝑤𝑓𝑥,𝑦 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Optimization

9
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent

Optimum

Initialization

10
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent

Optimum

Initialization

11
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent

Optimum

Initialization

Follow the
slope of the
DERIVATIVE

12
Prof. Leal-Taixé and Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of
greatest

increase of
the function

Learning rate
13

Prof. Leal-Taixé and Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of
greatest

increase of
the function

SMALL Learning rate
14

Prof. Leal-Taixé and Prof. Niessner

Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of
greatest

increase of
the function

LARGE Learning rate
15

Prof. Leal-Taixé and Prof. Niessner

Gradient Descent

Optimum

Initialization

What is the
gradient when
we reach this
point?

Not guaranteed
to reach the

optimum 16
Prof. Leal-Taixé and Prof. Niessner

Convergence of Gradient Descent
• Convex function: all local minima are global minima

Prof. Leal-Taixé and Prof. Niessner 17

If line/plane segment between any two points lies above or on the graph

Convergence of Gradient Descent
• Neural networks are non-convex

– > many (different) local minima
– > no (practical) way which is globally optimal

Prof. Leal-Taixé and Prof. Niessner 18Figure credit: Qi Li

Convergence of Gradient Descent

Prof. Leal-Taixé and Prof. Niessner 19

Convergence of Gradient Descent

Prof. Leal-Taixé and Prof. Niessner 20Figure credit: A. Geron

Gradient Descent: Multiple Dimensions

Prof. Leal-Taixé and Prof. Niessner 21

Various ways to visualize…

Gradient Descent: Multiple Dimensions

Prof. Leal-Taixé and Prof. Niessner 22

Gradient Descent for Neural Networks

Prof. Leal-Taixé and Prof. Niessner 23

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤,𝑏𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)

Gradient Descent: Single Training Sample
• Given a neural network function 𝐿
• Single training sample (𝑥𝑖 , 𝑦𝑖)
• Find best model parameters 𝜃 = 𝑤, 𝑏

• Cost 𝐿𝑖 𝜃, 𝑥𝑖 , 𝑦𝑖
– 𝜃 = argmin 𝐿𝑖(𝑥𝑖 , 𝑦𝑖)

• Gradient Descent:
– Initialize 𝜃1 with ‘random’ values (more to that later)

– 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿𝑖(𝜃, 𝑥𝑖 , 𝑦𝑖)

– Iterate until convergence: 𝜃𝑘+1 − 𝜃𝑘 < 𝜖

Prof. Leal-Taixé and Prof. Niessner 24

Gradient Descent: Single Training Sample

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿𝑖(𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖)

𝛻𝜃𝐿𝑖 𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖 computed via backpropagation

for typical network dim 𝛻𝜃𝐿𝑖 𝜃
𝑘 , 𝑥𝑖 , 𝑦𝑖 = dim 𝜃 ≫ 1𝑚𝑖𝑜

Prof. Leal-Taixé and Prof. Niessner 25

Weights, biases at step k
(prev. step)

Weights, biases at step k
(new params. after step) Learning rate

Gradient w.r.t. 𝜃

Training sample {𝑥𝑖 , 𝑦𝑖}

Loss Function

curr. model

Gradient Descent: Multiple Training Samples

• Given a neural network function 𝐿
• Multiple (𝑛) training samples (𝑥𝑖 , 𝑦𝑖)
• Find best model parameters 𝜃 = 𝑤, 𝑏

• Cost 𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝐿𝑖(𝜃, 𝑥𝑖 , 𝑦𝑖)

– 𝜃 = argmin 𝐿

Prof. Leal-Taixé and Prof. Niessner 26

Gradient Descent: Multiple Training Samples

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃
𝑘 , 𝑥{1..𝑛}, 𝑦{1..𝑛})

𝛻𝜃𝐿 𝜃𝑘 , 𝑥 1..𝑛 , 𝑦 1..𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜃𝐿𝑖 𝜃

𝑘 , 𝑥𝑖 , 𝑦𝑖

often people are lazy and just write:
𝛻𝐿 = σ𝑖=1

𝑛 𝛻𝜃𝐿𝑖

omitting 1
𝑛

is not ‘wrong’, it just means rescaling the learning rate

Prof. Leal-Taixé and Prof. Niessner 27

Reminder: this comes from backprop.

Gradient is average / sum
over residuals

Side Note: Optimal Learning Rate
Can compute optimal learning rate 𝛼 using Line Search

(optimal for a given set)

1. Compute gradient: 𝛻𝜃𝐿 =
1

𝑛
σ𝑖=1
𝑛 𝛻𝜃𝐿𝑖

2. Optimize for optimal step 𝛼:
argmin

𝛼
𝐿(𝜃𝑘 − 𝛼 𝛻𝜃𝐿)

3. 𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿

Prof. Leal-Taixé and Prof. Niessner 28

𝜃𝑘+1

Not that practical for DL since
we need to solve huge system every step…

Gradient Descent on Train Set
• Given large train set with (𝑛) training samples (𝑥𝑖 , 𝑦𝑖)

– Let’s say 1 mio labeled images
– Let’s say our network has 500k parameters

• Gradient has 500k dimensions
• 𝑛 = 1𝑚𝑖𝑜

-> Extremely expensive to compute

Prof. Leal-Taixé and Prof. Niessner 29

Remember: Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

What is the size
of the Jacobian?

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Assuming input and output ∈ ℝ4096

𝑥 ∈ ℝ4096

𝑧 ∈ ℝ4096

dim J = 4096 × 4096

Prof. Leal-Taixé and Prof. Niessner 30

Remember: Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

How efficient is that:
- dim J = 4096 × 4096 = 16.78mio
- Assuming floats (i.e., 4 bytes / elem)
- -> 64 MB

Typically, networks are run in batches:
- Assuming mini-batch size of 16
- -> dim J = 16 ⋅ 4096 × 16 ⋅ 4096 = 4295 mio
- -> 16.384MB = 16GB

How to handle this?

Prof. Leal-Taixé and Prof. Niessner 31

Stochastic Gradient Descent (SGD)
• If we have 𝑛 training samples we need to compute

the gradient for all of them which is 𝑂(𝑛)

• Gradient is an expectation, and so it can be
approximated with a small number of samples

Minibatch: choose subset of trainset 𝑚 ≪ 𝑛
𝐵𝑖 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚, 𝑦𝑚 }

{𝐵1, 𝐵2, … , 𝐵𝑛/𝑚}

Prof. Leal-Taixé and Prof. Niessner 32

Stochastic Gradient Descent (SGD)
• Minibatch size is hyperparameter

– Typically power of 2 -> 8, 16, 32, 64, 128…
– Mostly limited by GPU memory (in backprop pass)
– E.g.,

• Train set has n = 220 (about 1 mio) images
• Assume batch size of m = 64

• 𝐵1 … 𝑛/𝑚 = 𝐵1 … 16,384 minibatches

Epoch = complete pass through training set

Prof. Leal-Taixé and Prof. Niessner 33

Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner 34

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch

Stochastic Gradient Descent (SGD)
• Convergence of stochastic gradient descent

– σ𝑖=1
∞ 𝛼𝑖 = ∞

– σ𝑖=1
∞ 𝛼𝑖

2 < ∞

• When to update learning rate (learning rate decay)
– Start high, reduce over time
– Reduce every iteration, or have fixed training schedule (empirical)

• Learning rate decreasing strategies
– Many strategies

Prof. Leal-Taixé and Prof. Niessner 35

Lots of literature: Robbins-Monro condition
There are some ‘easy’ intuitions though…

Problems of SGD
• Gradient is scaled equally across all dimensions

– > I.e., cannot independently scale directions
– > need to have conservative min learning rate to avoid

divergence
– > Slower than ‘necessary’

• Finding good learning rate is an art by itself
– > More next lecture

Prof. Leal-Taixé and Prof. Niessner 36

Gradient Descent with Momentum

Prof. Leal-Taixé and Prof. Niessner 37

We’re making many steps back
and forth along this dimension.
Would love to track that this is
averaging out over time.

Would love to go faster here…
I.e., accumulated gradients over time

Fig. credit: A. Ng

Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!

Prof. Leal-Taixé and Prof. Niessner 38

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 39

Step will be largest when a sequence of
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

Gradient Descent with Momentum
• Can it overcome local minima?

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 40

Nesterov’s Momentum
• Look-ahead momentum

෨𝜃𝑘+1 = 𝜃𝑘 − 𝑣𝑘

𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(෨𝜃
𝑘+1)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 41
Sutskever 2013, Nesterov 1983

Nesterov’s Momentum

Prof. Leal-Taixé and Prof. Niessner 42Fig. credit G. Hinton

෨𝜃𝑘+1 = 𝜃𝑘 + 𝑣𝑘
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(෨𝜃

𝑘+1)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Root Mean Squared Prop (RMSProp)

• RMSprop divides the learning rate by an
exponentially-decaying average of squared gradients.

Prof. Leal-Taixé and Prof. Niessner 43

Small gradients

La
rg

e
gr

ad
ie

n
ts

Fig. credit: A. Ng

RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Prof. Leal-Taixé and Prof. Niessner 44

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!

RMSProp

Prof. Leal-Taixé and Prof. Niessner 45

X-direction
Small gradients

Y-
D

ir
ec

ti
o

n
La

rg
e

gr
ad

ie
n

ts

Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients
-> second momentum

Can increase learning rate!

RMSProp

• Dampening the oscillations for high-variance
directions

• Can use faster learning rate because it is less likely to
diverge
– > Speed up learning speed
– > Second moment

Prof. Leal-Taixé and Prof. Niessner 46

Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 47

First momentum:
mean of gradients

Second momentum:
variance of gradients

Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 48

𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2

Adam
• Exponentially-decaying mean and variance of

gradients (combines first and second order
momentum)

• Hyperparameters: 𝛼, 𝛽1, 𝛽2, 𝜖

Prof. Leal-Taixé and Prof. Niessner 49

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Typically 10−8Often 0.9

Often 0.999

Defaults in Pytorch

Needs tuning!

There are a couple of others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ….

Prof. Leal-Taixé and Prof. Niessner 50

E.g., AdaGrad Update
• Adapt the learning rate of all model parameters

Small constant for
numerical stability

Learning rate

53
Prof. Leal-Taixé and Prof. Niessner

E.g., AdaGrad Update
• Theory: more progress in regions where the function

is more flat

• Practice: for most deep learning models,
accumulating gradients from the beginning results in
excessive decrease in the effective learning rate

54
Prof. Leal-Taixé and Prof. Niessner

There are a couple of others…
• ‘Vanilla’ SGD
• Momentum
• RMSProp
• Adagrad
• Adadelta
• AdaMax
• Nada
• AMSGrad
• ….

Prof. Leal-Taixé and Prof. Niessner 55

Adam is mostly method
of choice for neural networks!

It’s actually fun to play around with SGD updates.
It’s easy and get pretty immediate feedback

Some References to SGD Updates
• http://ruder.io/optimizing-gradient-

descent/index.html#rmsprop

• TesnorFlow Docu:
https://www.tensorflow.org/api_docs/python/tf/trai
n/MomentumOptimizer (and respective others)

• PyTorch Docu:
https://pytorch.org/docs/master/optim.html

Prof. Leal-Taixé and Prof. Niessner 56

http://ruder.io/optimizing-gradient-descent/index.html#rmsprop
https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer
https://pytorch.org/docs/master/optim.html

Convergence

57
Prof. Leal-Taixé and Prof. Niessner

Convergence

58
Prof. Leal-Taixé and Prof. Niessner

TODO continue here

Prof. Leal-Taixé and Prof. Niessner 59

Importance of Learning Rate

60
Prof. Leal-Taixé and Prof. Niessner

Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND

DERIVATIVE

61
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Approximate our function by a second-order Taylor

series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative
(curvature)

62
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!

63
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• Differentiate and equate to zero

Update step

Parameters
of a network

(millions)

Number of
elements in
the Hessian

Computational
complexity of

‘inversion’ per iteration

64
Prof. Leal-Taixé and Prof. Niessner

Newton’s method
• SGD (green)

• Newton’s method exploits
the curvature to take a
more direct route

Image from Wikipedia
65

Prof. Leal-Taixé and Prof. Niessner

Newton’s method

Can you apply Newton’s
method for linear

regression? What do you
get as a result?

66
Prof. Leal-Taixé and Prof. Niessner

BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS

67
Prof. Leal-Taixé and Prof. Niessner

Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 − 𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN):
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is unstable):
2 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector

Prof. Leal-Taixé and Prof. Niessner 68

Levenberg-Marquardt

• Levenberg-Marquardt (LM)

𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘) ⋅ 𝑥𝑘 − 𝑥𝑘+1
= 𝛻𝑓(𝑥𝑘)

– Instead of a plain Gradient Descent for large 𝜆, scale each
component of the gradient according to the curvature.
• Avoids slow convergence in components with a small

gradient

Prof. Leal-Taixé and Prof. Niessner 69

Which, what and when?
• Standard: Adam

• Fallback option: SGD with momentum

• Newton, L-BFGS, GN, LM only if you can do full batch
updates (doesn’t work well for minibatches!!)

70
Prof. Leal-Taixé and Prof. Niessner

This practically never happens for DL
Theoretically, it would be nice though due to fast convergence

Please Remember!
• Think about your problem and optimization at hand

• SGD is specifically designed for minibatch

• When you can, use 2nd order method -> it’s just faster

• GD or SGD is not a way to solve a linear system!

Prof. Leal-Taixé and Prof. Niessner 71

Next lecture

• This week:
– No tutorial on Thursday due to Holiday!

• Next lecture on May 14th:
– More on optimization of neural networks

72
Prof. Leal-Taixé and Prof. Niessner

See you next week!

Prof. Leal-Taixé and Prof. Niessner 73

