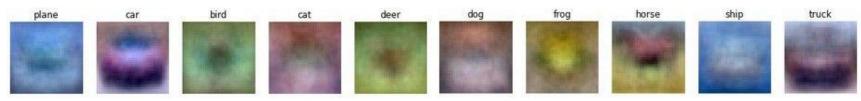


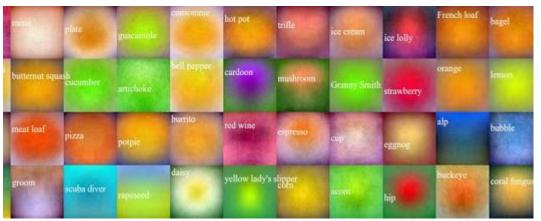
Lecture 3 recap

Beyond linear

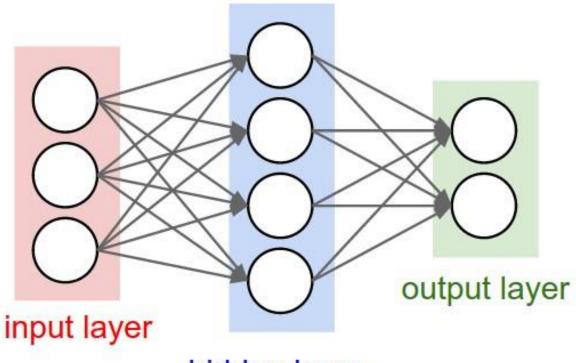
• Linear score function f = Wx



On CIFAR-10

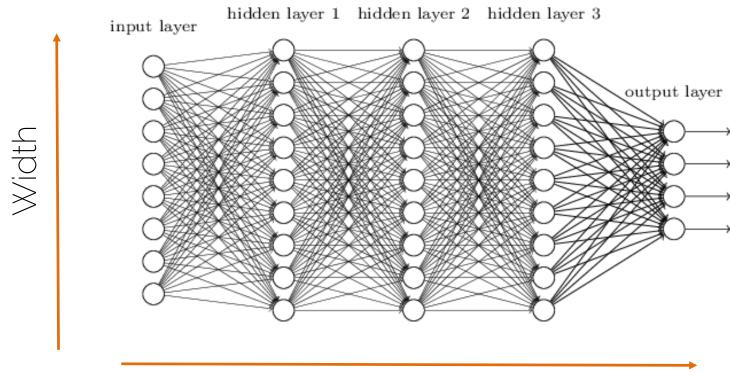


Neural Network



hidden layer

Neural Network



Neural Network

• Linear score function f = Wx

- Neural network is a nesting of 'functions'
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
 - 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 - ... up to hundreds of layers

Computational Graphs

- Neural network is a computational graph
 - It has compute nodes
 - It has edges that connect nodes
 - It is directional
 - It is organized in 'layers'

Backprop con't

The importance of gradients

All optimization schemes are based on computing gradients

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

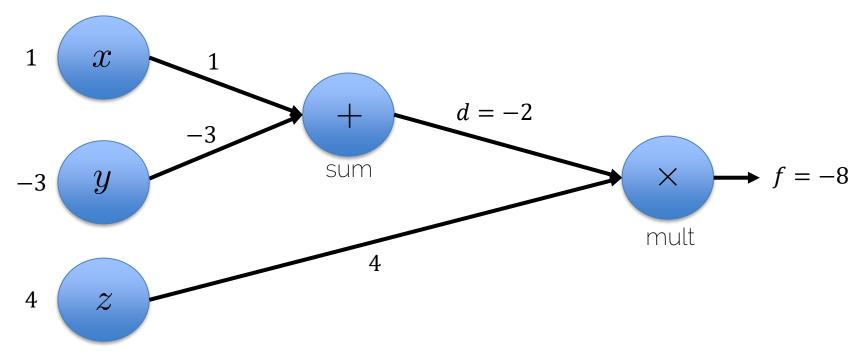
 One can compute gradients analytically but what if our function is too complex?

Break down gradient computation

Backpropagation

Backprop: Forward Pass

• $f(x, y, z) = (x + y) \cdot z$ Initialization x = 1, y = -3, z = 4

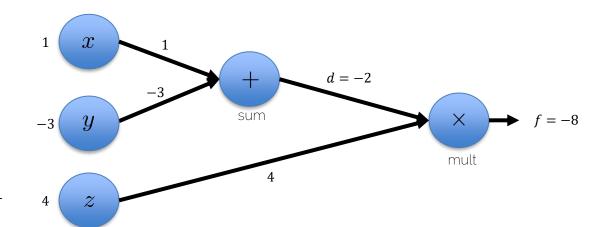


$$f(x, y, z) = (x + y) \cdot z$$

with $x = 1, y = -3, z = 4$

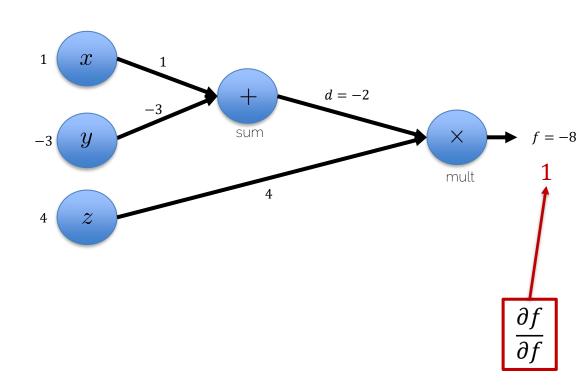
$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

What is
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$?



$$f(x,y,z) = (x+y) \cdot z$$
 with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

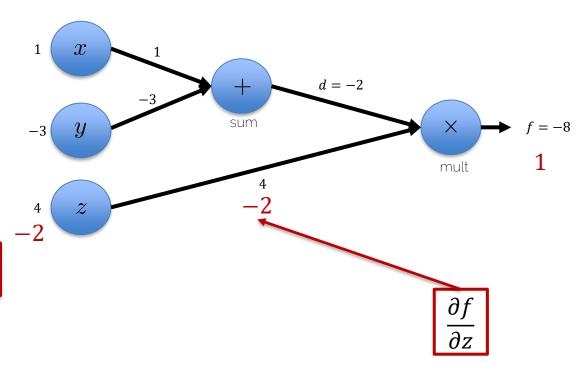


$$f(x, y, z) = (x + y) \cdot z$$

with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

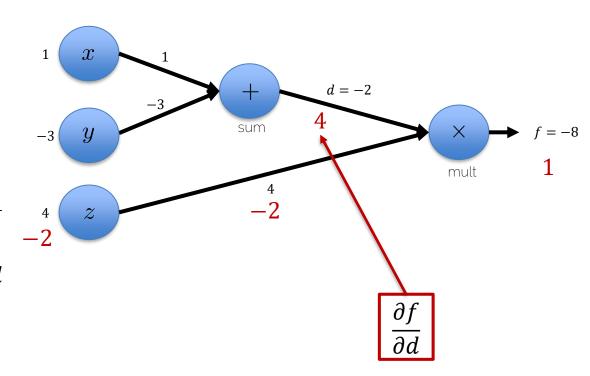
$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z \cdot \frac{\partial f}{\partial z} = d$



$$f(x,y,z) = (x+y) \cdot z$$
 with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

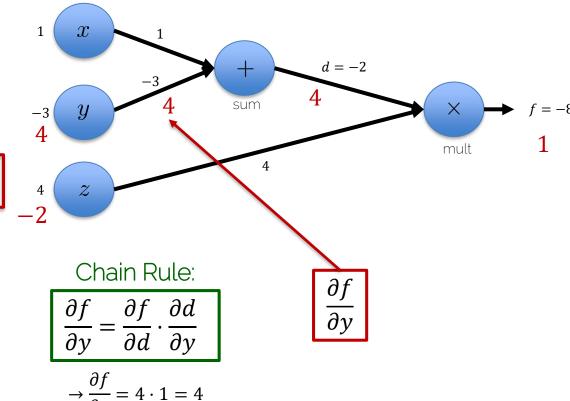
$$f = d \cdot z$$
 $\frac{\partial f}{\partial d} = z$ $\frac{\partial f}{\partial z} = d$



$$f(x, y, z) = (x + y) \cdot z$$

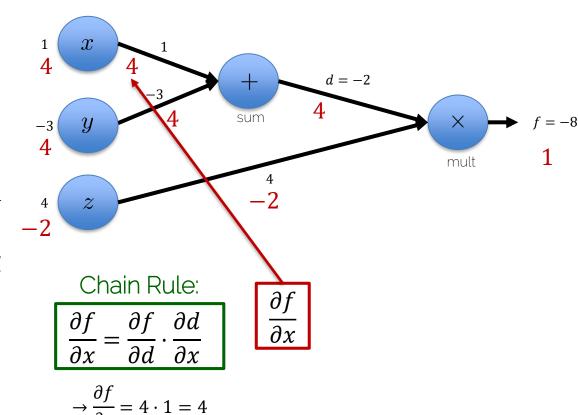
with $x = 1, y = -3, z = 4$

$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$, $\frac{\partial d}{\partial y} = 1$

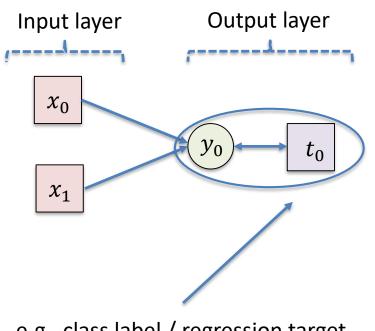


$$f(x,y,z) = (x+y) \cdot z$$
 with $x = 1, y = -3, z = 4$

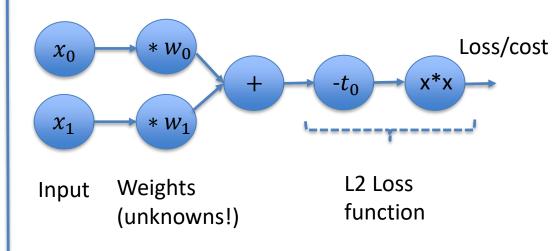
$$d = x + y$$
 $\frac{\partial d}{\partial x} = 1$ $\frac{\partial d}{\partial y} = 1$



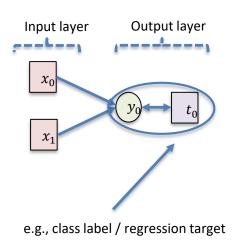
- x_k input variables
- $w_{l,m,n}$ network weights (note 3 indices)
 - I which layer
 - m which neuron in layer
 - n weights in neuron
- y_i computed output (i output dim; nout)
- t_i ground truth targets
- L is loss function

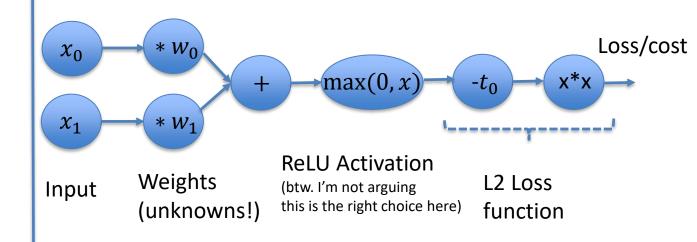


e.g., class label / regression target

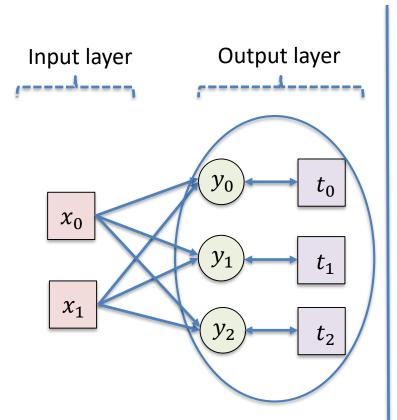


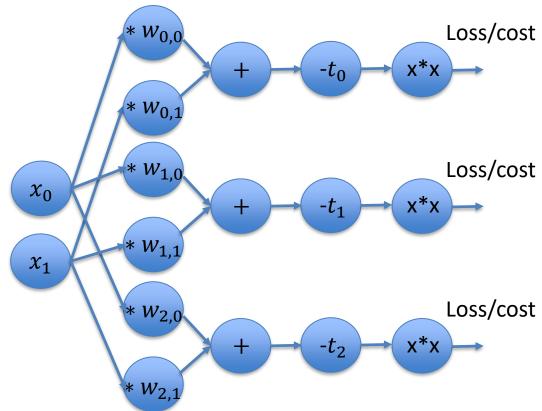
We want to compute gradients w.r.t. all weights w



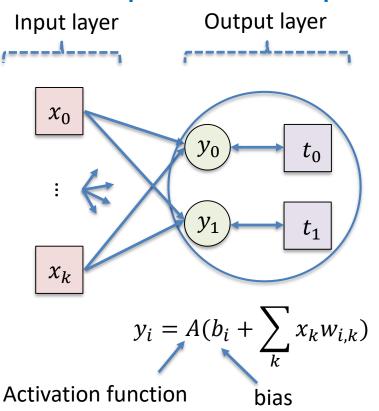


We want to compute gradients w.r.t. all weights w





We want to compute gradients w.r.t. all weights w



$$L_i = (y_i - t_i)^2$$

$$L = \sum_{i} L_{i}$$

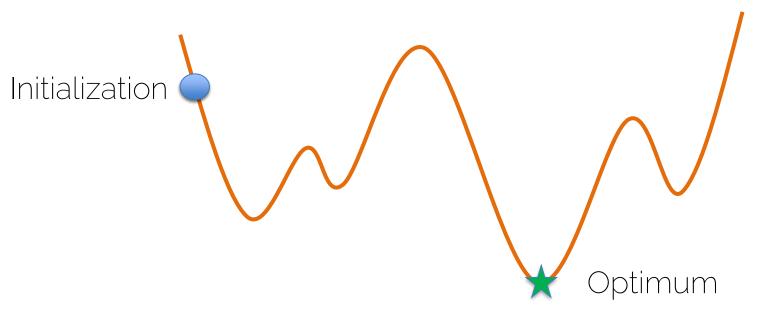
L2 loss -> simply sum up squares Energy to minimize is E=L

$$\frac{\partial L}{\partial w_{i,k}} = \frac{\partial L}{\partial y_i} \cdot \frac{\partial y_i}{\partial w_{i,k}}$$

-> use chain rule to compute partials

We want to compute gradients w.r.t. all weights w *AND* biases b

$$\mathbf{x}^* = \arg\min f(\mathbf{x})$$

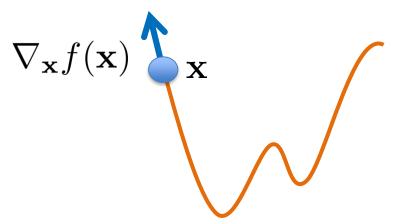


From derivative to gradient

$$\frac{df(x)}{dx} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})$$
 the function

Direction of greatest increase of the function

Gradient steps in direction of negative gradient



$$\mathbf{x}' = \mathbf{x} - \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$$

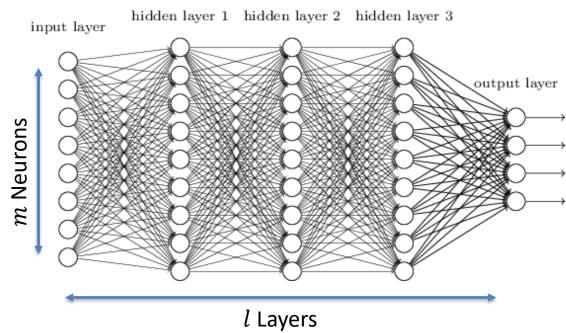
Learning rate

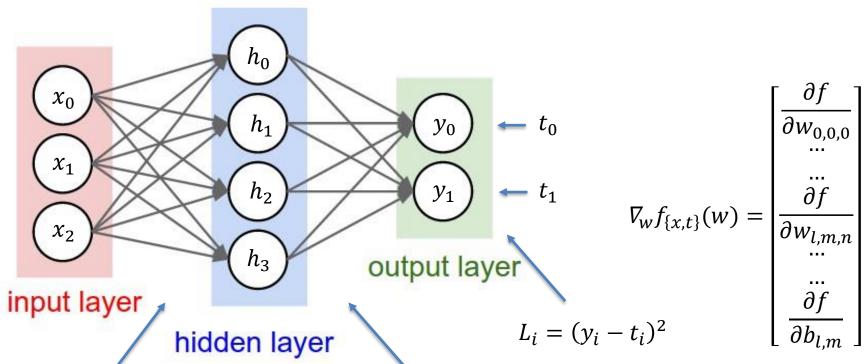
For a given training pair {x,t}, we want to update all weights; i.e., we need to compute derivatives w.r.t. to all weights

$$\nabla_{w} f_{\{x,t\}}(w) = \begin{bmatrix} \frac{\partial f}{\partial w_{0,0,0}} \\ \dots \\ \frac{\partial f}{\partial w_{l,m,n}} \end{bmatrix}$$

Gradient step:

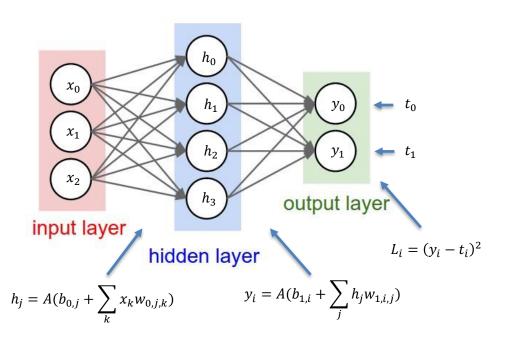
$$w' = w - \epsilon \nabla_{\!w} f_{\{x,t\}}(w)$$





$$h_j = A(b_{0,j} + \sum_k x_k w_{0,j,k})$$

$$y_i = A(b_{1,i} + \sum_j h_j w_{1,i,j})$$
Just simple: $A(x) = \max(0, x)$



Just go through layer by layer

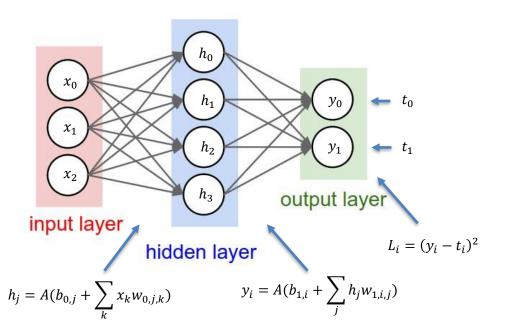
Backpropagation

$$\frac{\partial L}{\partial w_{1,i,j}} = \frac{\partial L}{\partial y_i} \cdot \frac{\partial y_i}{\partial w_{1,i,j}}$$

$$\frac{\partial L}{\partial w_{0,j,k}} = \frac{\partial L}{\partial y_i} \cdot \frac{\partial y_i}{\partial h_i} \cdot \frac{\partial h_j}{\partial w_{0,j,k}}$$

$$\frac{\partial L_i}{\partial y_i} = 2(y_i - t_i)$$
 ...

$$\frac{\partial y_i}{\partial w_{1,i,j}} = h_j$$
 if > 0, else 0



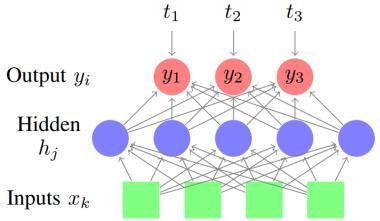
How many unknown weights?

Output layer: $2 \cdot 4 + 2$ #neurons #input channels #biases

Hidden Layer: $4 \cdot 3 + 4$

Note that some activations have also weights

Derivatives of Cross Entropy Loss



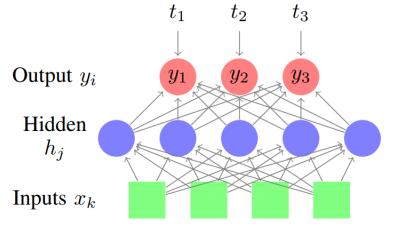
$$E = -\sum_{i=1}^{nout} (t_i \log(y_i) + (1 - t_i) \log(1 - y_i))$$

$$y_i = \frac{1}{1 + e^{-s_i}}$$

$$s_i = \sum_{j=1}^{nout} h_j w_{ji}$$

[Sadowski]

Derivatives of Cross Entropy Loss



$$E = -\sum_{i=1}^{nout} (t_i \log(y_i) + (1 - t_i) \log(1 - y_i))$$

$$y_i = \frac{1}{1 + e^{-s_i}}$$

$$s_i = \sum_{j=1}^{nout} h_j w_{ji}$$

Gradients of weights of last layer:

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial s_i} \frac{\partial s_i}{\partial w_{ji}}$$

$$\frac{\partial E}{\partial y_i} = \frac{-t_i}{y_i} + \frac{1 - t_i}{1 - y_i},$$

$$= \frac{y_i - t_i}{y_i(1 - y_i)},$$

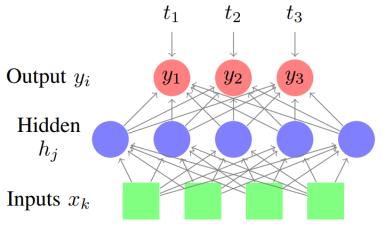
$$\frac{\partial E}{\partial s_i} = y_i - t_i$$

$$\frac{\partial s_i}{\partial w_{ji}} = h_j$$

$$\frac{\partial E}{\partial w_{ji}} = (y_i - t_i)h_j$$

[Sadowski]

Derivatives of Cross Entropy Loss



$$E = -\sum_{i=1}^{nout} (t_i \log(y_i) + (1 - t_i) \log(1 - y_i))$$

$$y_i = \frac{1}{1 + e^{-s_i}}$$

$$s_i = \sum_{j=1}^{nout} h_j w_{ji}$$

Gradients of weights of first layer:

$$\frac{\partial E}{\partial s_{j}^{1}} = \sum_{i=1}^{nout} \frac{\partial E}{\partial s_{i}} \frac{\partial s_{i}}{\partial h_{j}} \frac{\partial h_{j}}{\partial s_{j}^{1}}$$

$$= \sum_{i=1}^{nout} (y_{i} - t_{i})(w_{ji})(h_{j}(1 - h_{j}))$$

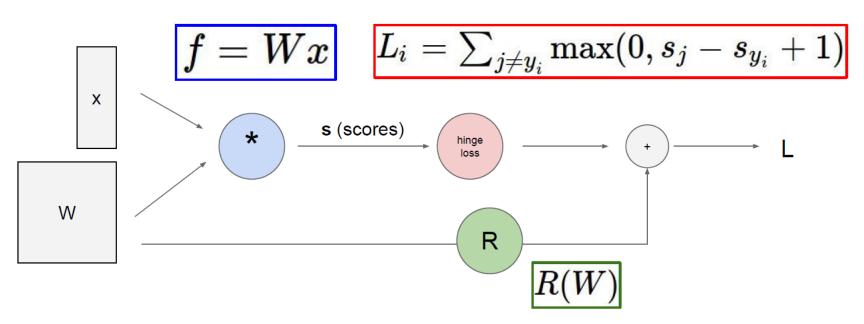
$$\frac{\partial E}{\partial h_{j}} = \sum_{i=1}^{nout} \frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial s_{i}} \frac{\partial s_{i}}{h_{j}}$$

$$= \sum_{i} \frac{\partial E}{\partial y_{i}} y_{i}(1 - y_{i})w_{ji}$$

$$\frac{\partial E}{\partial w_{kj}^{1}} = \frac{\partial E}{\partial s_{j}^{1}} \frac{\partial s_{j}^{1}}{\partial w_{kj}^{1}}$$

$$= \sum_{i=1}^{nout} (y_{i} - t_{i})(w_{ji})(h_{j}(1 - h_{j}))(x_{k})$$

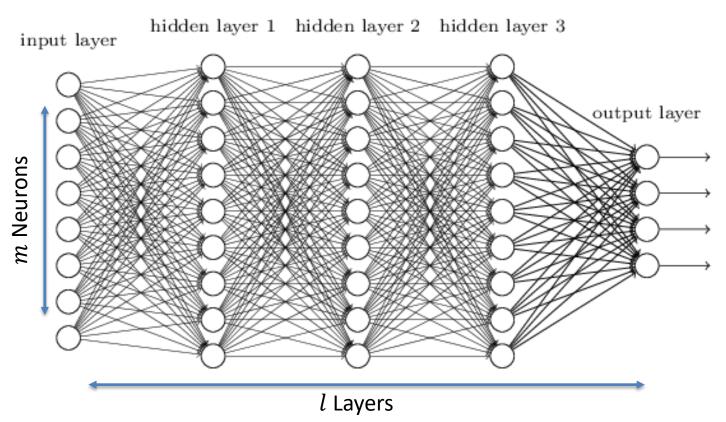
Derivatives of Neural Networks



Combining nodes:

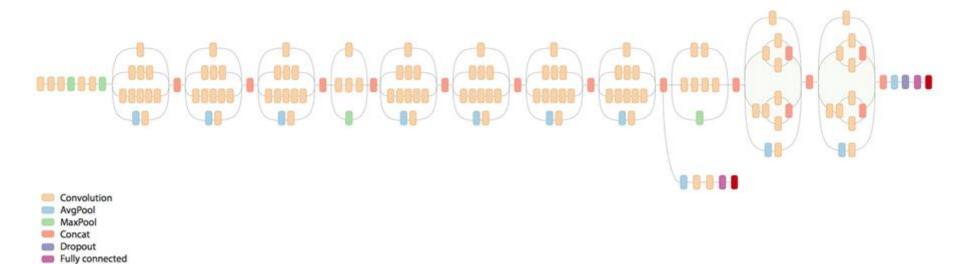
Linear activation node + hinge loss + regularization

Can become quite complex...



Can become quite complex...

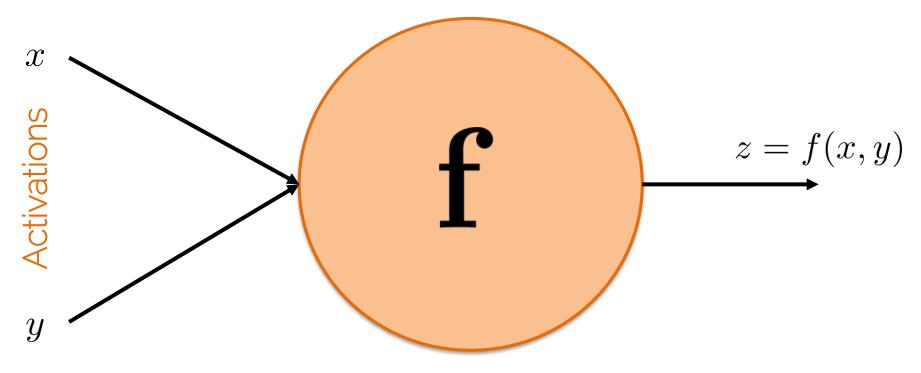
These graphs can be huge!



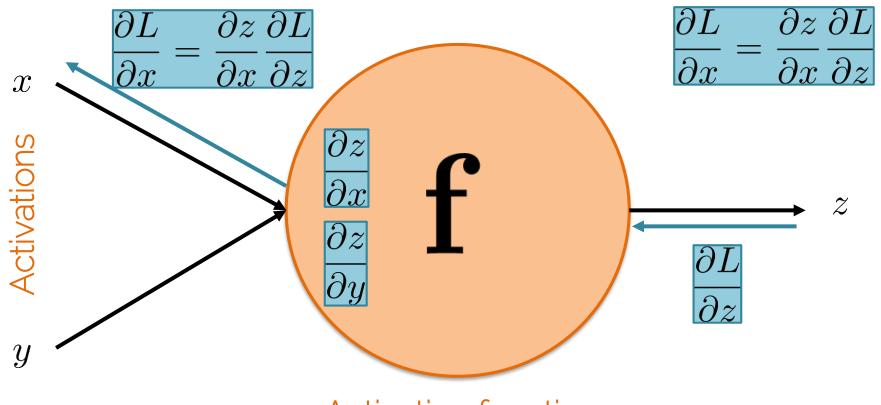
Another view of GoogLeNet's architecture.

Softmax

The flow of the gradients



The flow of the gradients



The flow of the gradients

 Many many many many of these nodes form a neural network

NEURONS

• Each one has its own work to do

FORWARD AND BACKWARD PASS

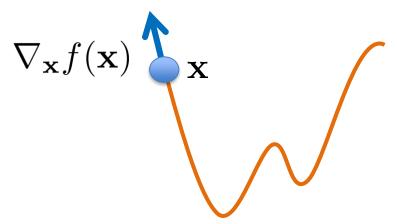
$$\mathbf{x}^* = \arg\min f(\mathbf{x})$$

From derivative to gradient

$$\frac{df(x)}{dx} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})$$
 the function

Direction of greatest increase of the function

Gradient steps in direction of negative gradient



$$\mathbf{x}' = \mathbf{x} - \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$$

Learning rate

How to pick good learning rate?

How to compute gradient for single training pair?

How to compute gradient for large training set?

How to speed things up @

Next lecture

- This week:
 - No tutorial this Thursday (due to MaiTUM)
 - Exercise 1 will be released on Thursday as planned

- Next lecture on May 7th:
 - Optimization of Neural Networks
 - In particular, introduction to SGD (our main method!)

See you next week!