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Beyond linear
• Linear score function 𝑓 = 𝑊𝑥

Credit: Li/Karpathy/Johnson

On CIFAR-10

On ImageNet
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Neural Network

Credit: Li/Karpathy/Johnson
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Neural Network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers 
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Computational Graphs
• Neural network is a computational graph

– It has compute nodes

– It has edges that connect nodes

– It is directional

– It is organized in ‘layers’
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Backprop con’t
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The importance of gradients
• All optimization schemes are based on computing 

gradients

• One can compute gradients analytically but what if 
our function is too complex?

• Break down gradient computation Backpropagation

Rumelhart 1986
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Backprop: Forward Pass
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧 Initialization 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

1

4

𝜕𝑓

𝜕𝑦

4

𝜕𝑓

𝜕𝑦
=
𝜕𝑓

𝜕𝑑
⋅
𝜕𝑑

𝜕𝑦

Chain Rule:

→
𝜕𝑓

𝜕𝑦
= 4 ⋅ 1 = 4

4

−2

Prof. Leal-Taixé and Prof. Niessner 14



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4
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Compute Graphs -> Neural Networks
• 𝑥𝑘 input variables
• 𝑤𝑙,𝑚,𝑛 network weights (note 3 indices)

– l which layer
– m which neuron in layer
– n weights in neuron

• 𝑦𝑖 computed output (i output dim; nout)
• 𝑡𝑖 ground truth targets
• 𝐿 is loss function
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Compute Graphs -> Neural Networks
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𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

e.g., class label / regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

-𝑡0+ x*x

Input Weights
(unknowns!)

L2 Loss
function

Loss/cost

We want to compute gradients w.r.t. all weights w



Compute Graphs -> Neural Networks
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𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

e.g., class label / regression target

𝑥0

𝑥1 ∗ 𝑤1

∗ 𝑤0

-𝑡0+ x*x

Input Weights
(unknowns!)

L2 Loss
function

Loss/cost

We want to compute gradients w.r.t. all weights w

max(0, 𝑥)

ReLU Activation
(btw. I’m not arguing
this is the right choice here)



Compute Graphs -> Neural Networks
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𝑥0

𝑥1

𝑦0 𝑡0

Input layer Output layer

𝑦1

𝑦2

𝑡1

𝑡2

𝑥0

𝑥1

∗ 𝑤0,0

-𝑡0+ x*x

Loss/cost

-𝑡1+ x*x

Loss/cost

∗ 𝑤0,1

∗ 𝑤1,0

∗ 𝑤1,1

-𝑡2+ x*x

Loss/cost∗ 𝑤2,0

∗ 𝑤2,1

We want to compute gradients w.r.t. all weights w



Compute Graphs -> Neural Networks
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𝑥0

𝑥𝑘

𝑦0 𝑡0

Input layer Output layer

𝑦1 𝑡1

…

𝑦𝑖 = 𝐴(𝑏𝑖 +෍

𝑘

𝑥𝑘𝑤𝑖,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝐿 =෍

𝑖

𝐿𝑖

We want to compute gradients w.r.t. all weights w
*AND* biases b

L2 loss -> simply sum up squares
Energy to minimize is E=L

Activation function bias

𝜕𝐿

𝜕𝑤𝑖,𝑘
=

𝜕𝐿

𝜕𝑦𝑖
⋅
𝜕𝑦𝑖
𝜕𝑤𝑖,𝑘

-> use chain rule to compute partials



Gradient Descent

Optimum

Initialization

21
Prof. Leal-Taixé and Prof. Niessner



Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

Learning rate
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Gradient Descent for Neural Networks
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𝛻𝑤𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛

For a given training pair {x,t},
we want to update all weights;
i.e., we need to compute derivatives
w.r.t. to all weights

𝑙 Layers

𝑚
N

eu
ro

n
s

Gradient step:
𝑤′ = 𝑤 − 𝜖𝛻𝑤𝑓𝑥,𝑡 (𝑤)



Gradient Descent for Neural Networks
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𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)



Gradient Descent for Neural Networks
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𝑥0
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𝑥2

ℎ0
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ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

Backpropagation

𝜕𝐿

𝜕𝑤1,𝑖,𝑗
=

𝜕𝐿

𝜕𝑦𝑖
⋅
𝜕𝑦𝑖

𝜕𝑤1,𝑖,𝑗

𝜕𝐿

𝜕𝑤0,𝑗,𝑘
=

𝜕𝐿

𝜕𝑦𝑖
⋅
𝜕𝑦𝑖
𝜕ℎ𝑗

⋅
𝜕ℎ𝑗

𝜕𝑤0,𝑗,𝑘
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𝜕𝐿𝑖
𝜕𝑦𝑖

= 2(yi − ti)

𝜕𝑦𝑖

𝜕𝑤1,𝑖,𝑗
= ℎ𝑗 if > 0, else 0

…



Gradient Descent for Neural Networks
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𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

How many unknown weights?

Output layer: 2 ⋅ 4 + 2

Hidden Layer: 4 ⋅ 3 + 4

#neurons #biases#input channels

Note that some activations have also weights
ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)



Derivatives of Cross Entropy Loss
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[Sadowski]



Derivatives of Cross Entropy Loss
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Gradients of weights of last layer:



Derivatives of Cross Entropy Loss

Prof. Leal-Taixé and Prof. Niessner 29

[Sadowski]

Gradients of weights of first layer:

ℎ𝑗



Derivatives of Neural Networks
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Combining nodes:
Linear activation node + hinge loss + regularization

Credit: Li/Karpathy/Johnson



Can become quite complex…
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Can become quite complex…
• These graphs can be huge!
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The flow of the gradients
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Activation function 33
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The flow of the gradients
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The flow of the gradients

• Many many many many of these nodes form a 
neural network

• Each one has its own work to do

NEURONS

FORWARD AND BACKWARD PASS
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Gradient descent
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Gradient Descent

Optimum

Initialization
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Gradient Descent
• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

Learning rate
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Gradient Descent
• How to pick good learning rate?

• How to compute gradient for single training pair?

• How to compute gradient for large training set?

• How to speed things up 
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Next lecture
• This week:

– No tutorial this Thursday (due to MaiTUM)
– Exercise 1 will be released on Thursday as planned

• Next lecture on May 7th: 
– Optimization of Neural Networks
– In particular, introduction to SGD (our main method!)
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See you next week!
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