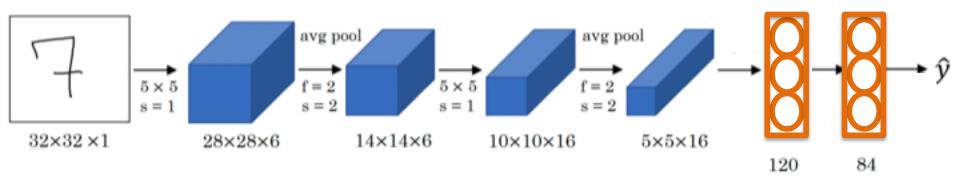


Lecture 10 recap

• Digit recognition: 10 classes

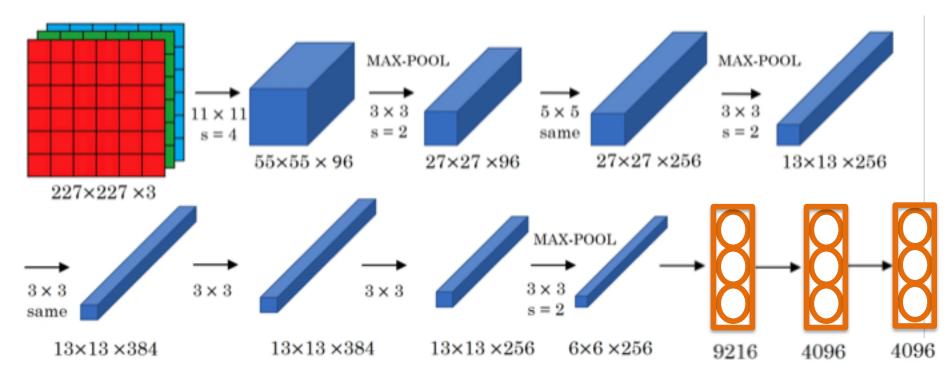
60k parameters



- Conv -> Pool -> Conv -> Pool -> Conv -> FC
- As we go deeper: Width, height Number of filters

AlexNet

[Krizhevsky et al. 2012]



• Softmax for 1000 classes

• Striving for simplicity

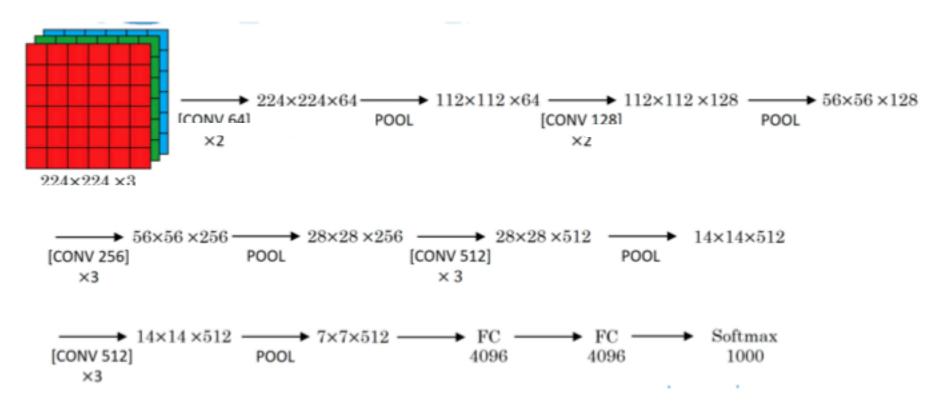
[Simonyan and Zisserman 2014]

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

VGGNet

Conv=3x3,s=1,same Maxpool=2x2,s=2



VGGNet

- Conv -> Pool -> Conv -> Pool -> Conv -> FC
- As we go deeper: Width, height V Number of filters

• Called VGG-16: 16 layers that have weights

138M parameters

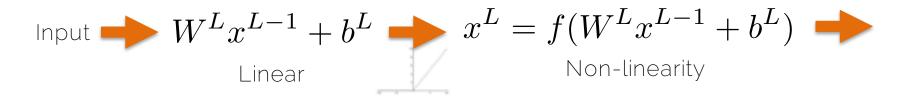
• Large but simplicity makes it appealing

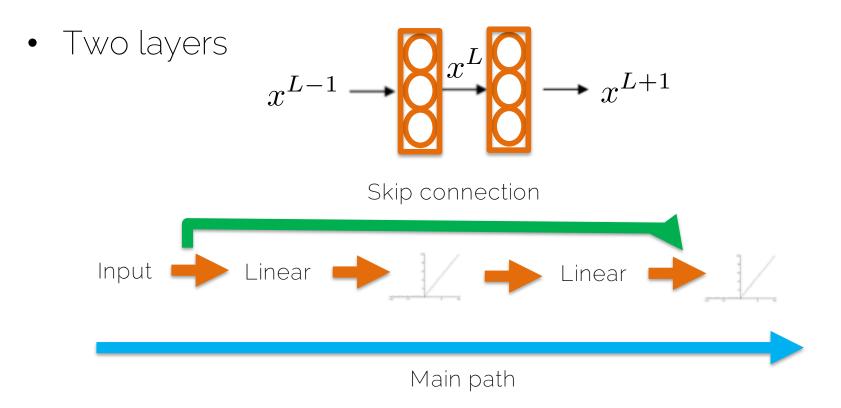
The problem of depth

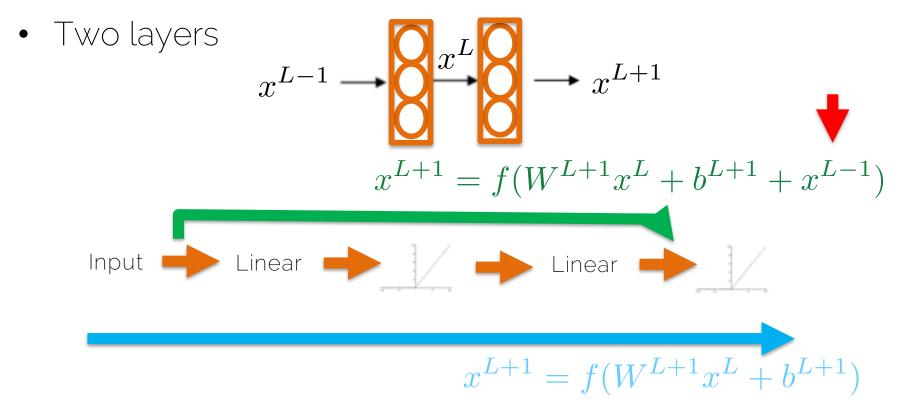
- As we add more and more layers, training becomes harder
- Vanishing and exploding gradients

• How can we train very deep nets?

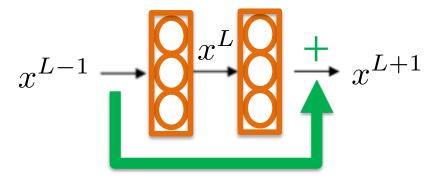
• Two layers $x^{L-1} \longrightarrow x^L \otimes x^{L+1}$





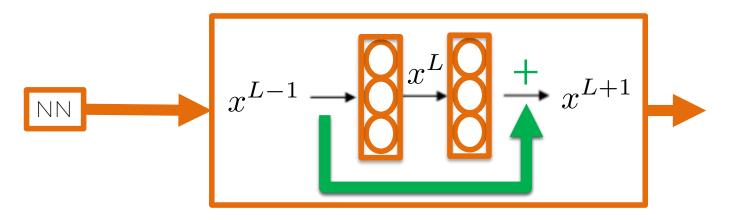


• Two layers

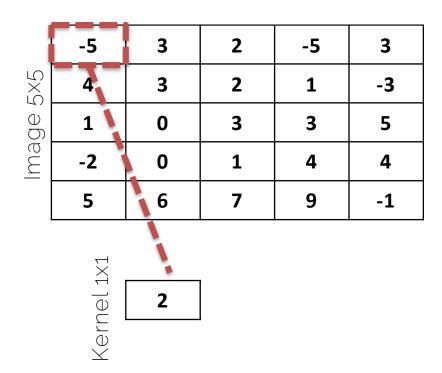


- Usually use a same convolution since we need same dimensions
- Otherwise we need to convert the dimensions with a matrix of learned weights or zero padding

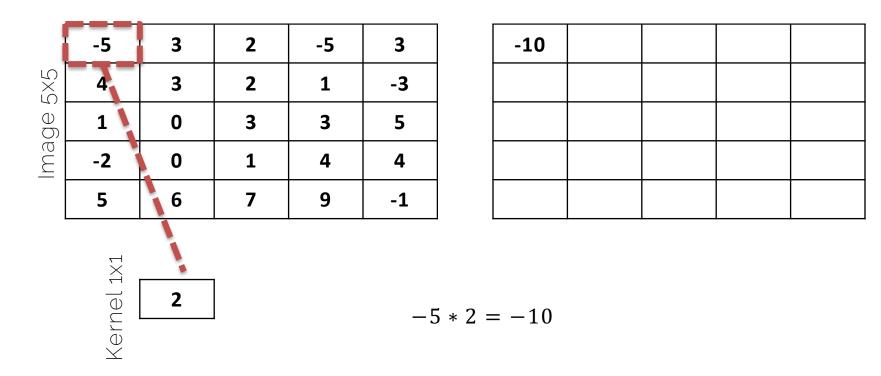
Why do ResNets work?

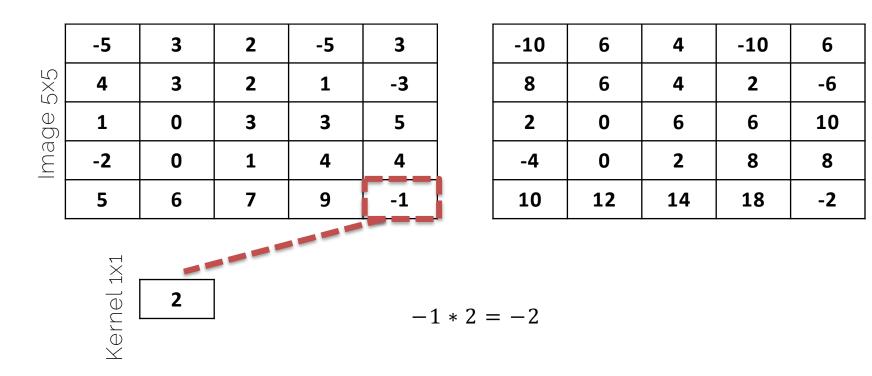


- The identity is easy for the residual block to learn
- Guaranteed it will not hurt performance, can only improve



What is the output size?





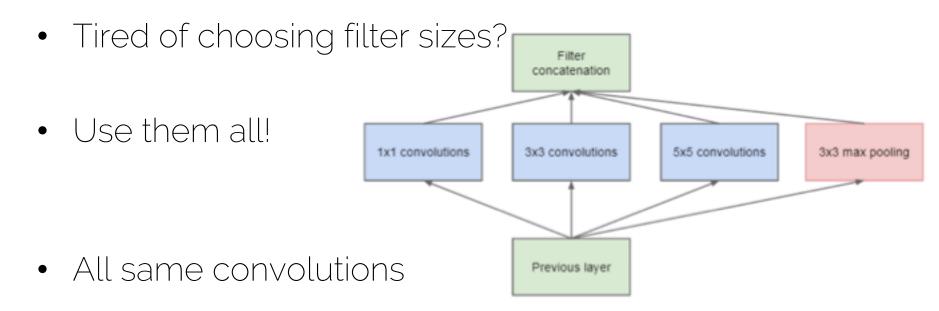
	-5	3	2	-5	3	-10	6	4	-10	6
5×5	4	3	2	1	-3	8	6	4	2	-6
lmage (1	0	3	3	5	2	0	6	6	10
	-2	0	1	4	4	-4	0	2	8	8
	5	6	7	9	-1	10	12	14	18	-2

• For 1 kernel or filter, it keeps the dimensions and just scales the input with a number

Using 1x1 convolutions

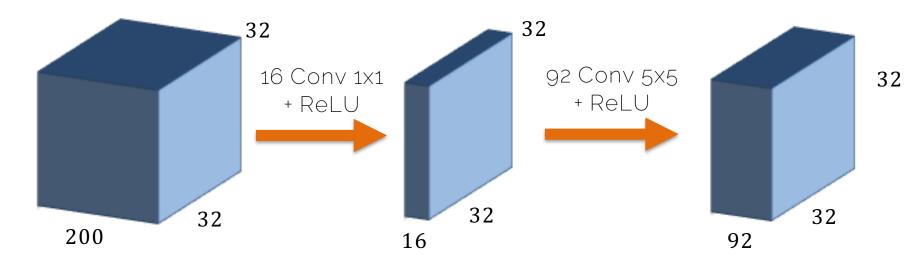
- Use it to shrink the number of channels
- Further adds a non-linearity → one can learn more complex functions

Inception layer



• 3x3 max pooling is with stride 1

Inception layer: computational cost



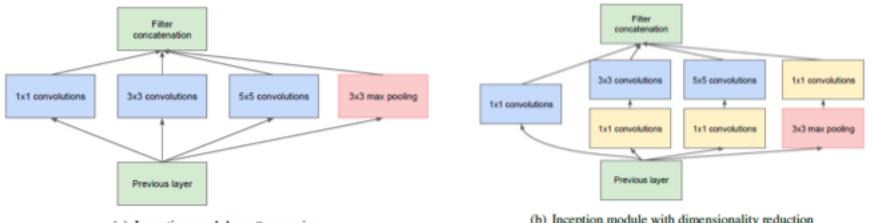
Multiplications: 1x1x200x32x32x16

5x5x16x32x32x92

~ 40 million

Reduction of multiplications by 1/10

Inception layer

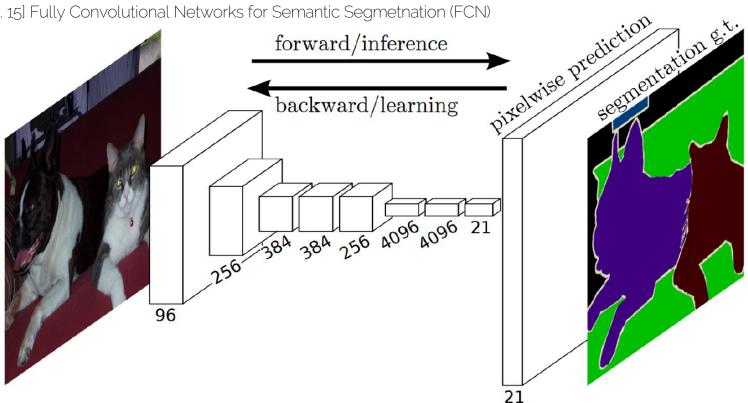


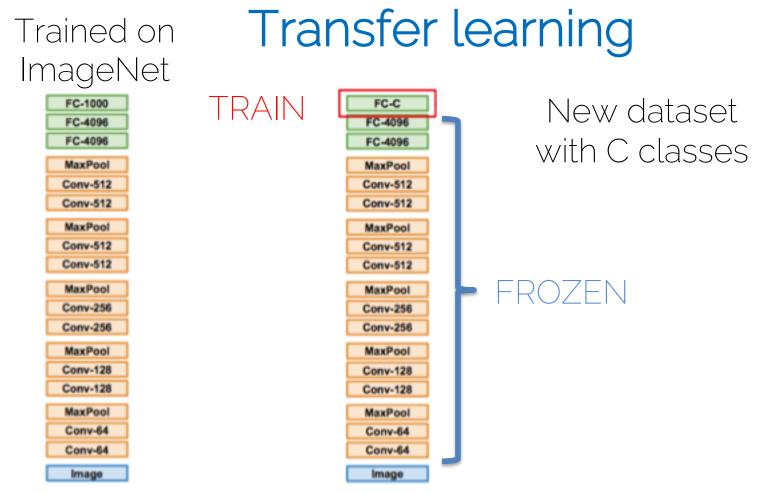
(a) Inception module, naïve version

(b) Inception module with dimensionality reduction

Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)





Prof. Leal-Taixé and Prof. Niessner

Donahue 2014, Razavian 2014 ²²

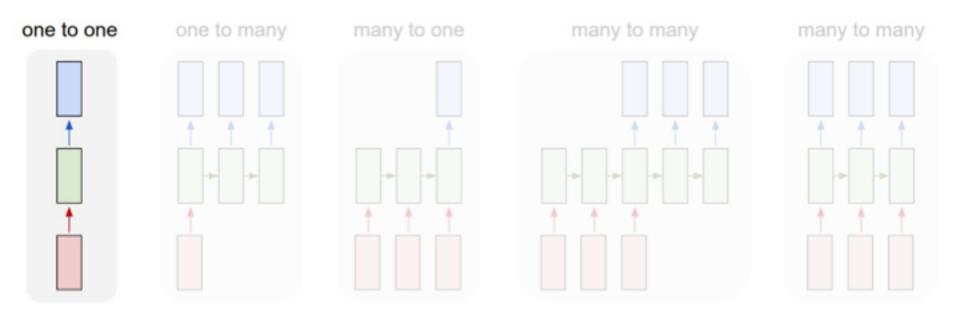
Now you are:

• Ready to perform image classification on any dataset

• Ready to design your own architecture

Ready to deal with other problems such as semantic segmentation (Fully Convolutional Network)

Recurrent Neural Networks



Classic Neural Networks for Image Classification

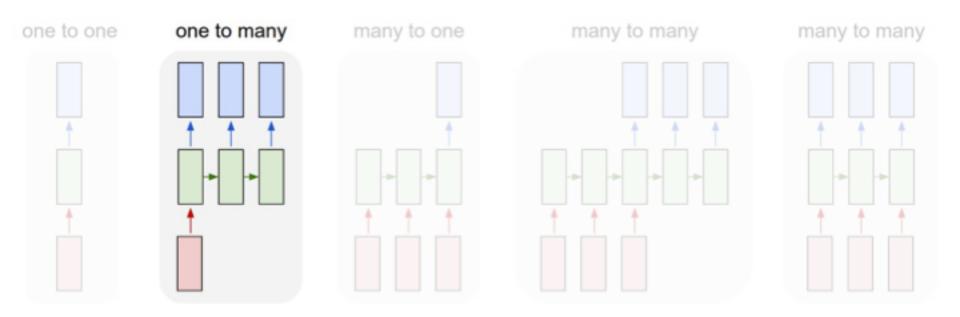
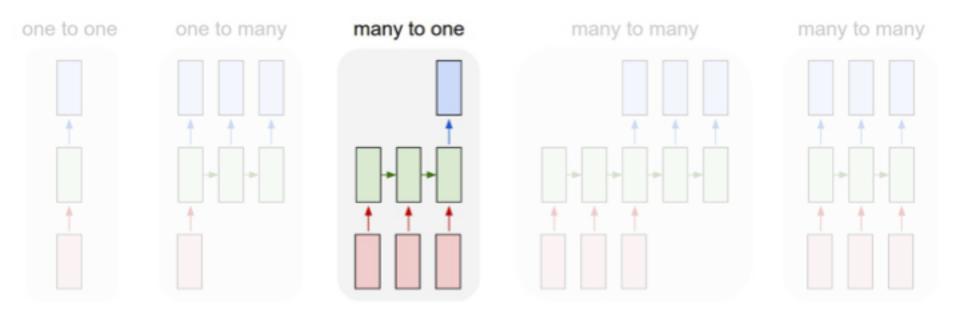
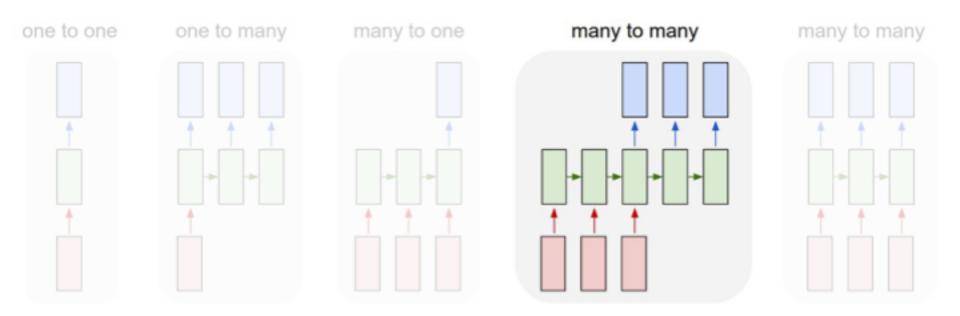


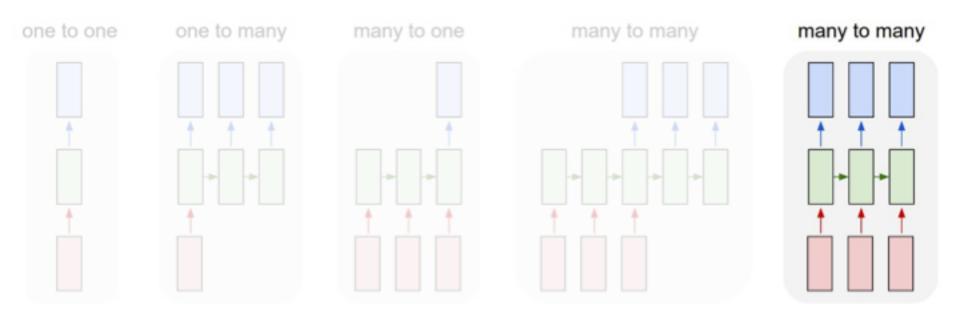
Image captioning



Language recognition

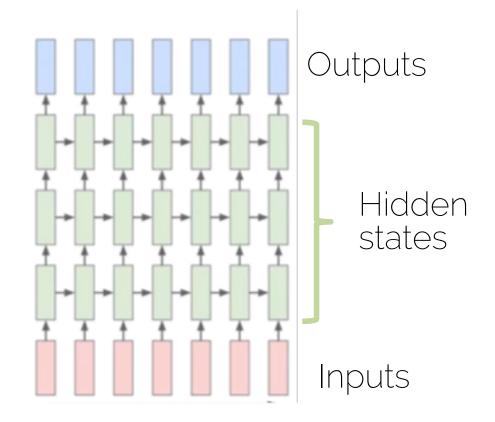


Machine translation



Event classification

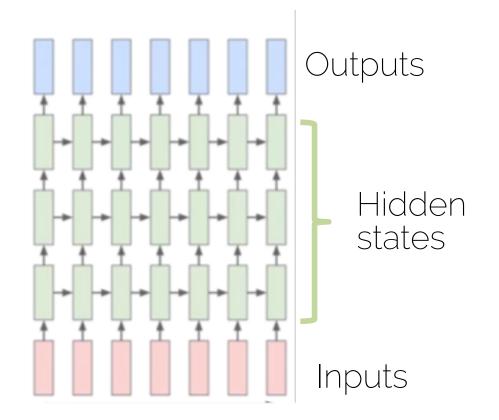
• Multi-layer RNN



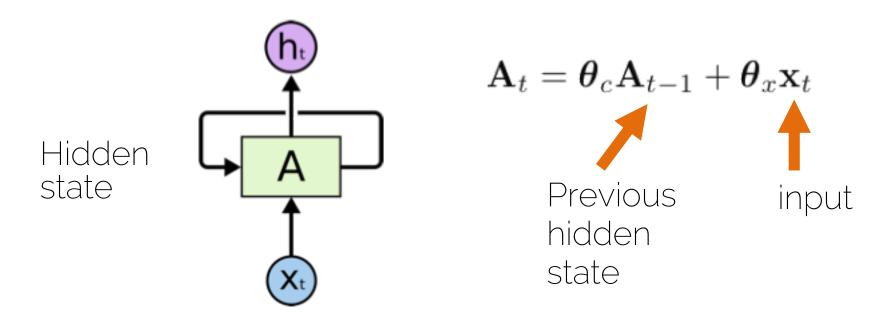
Multi-layer RNN

The hidden state will have its own internal dynamics

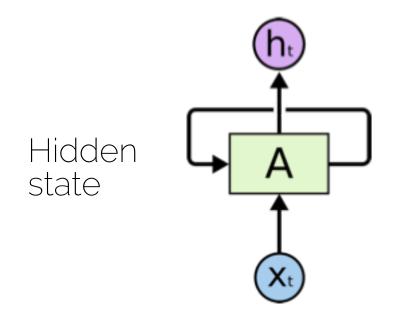
More expressive model!



• We want to have notion of "time" or "sequence"



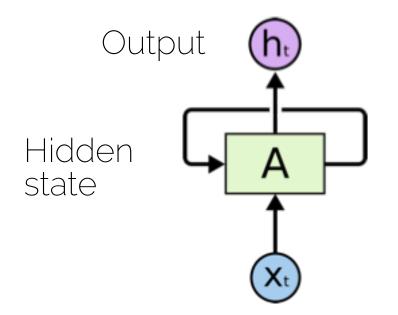
• We want to have notion of "time" or "sequence"



$$\mathbf{A}_t = \boldsymbol{\theta}_c \mathbf{A}_{t-1} + \boldsymbol{\theta}_x \mathbf{x}_t$$

Parameters to be learned

• We want to have notion of "time" or "sequence"

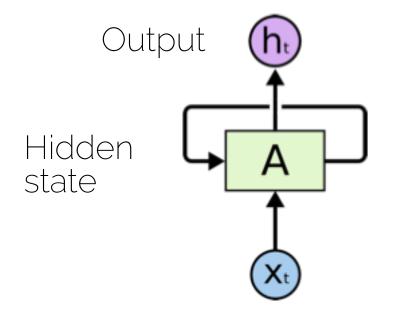


$$\mathbf{A}_t = \boldsymbol{\theta}_c \mathbf{A}_{t-1} + \boldsymbol{\theta}_x \mathbf{x}_t$$

 $\mathbf{h}_t = \boldsymbol{\theta}_h \mathbf{A}_t$

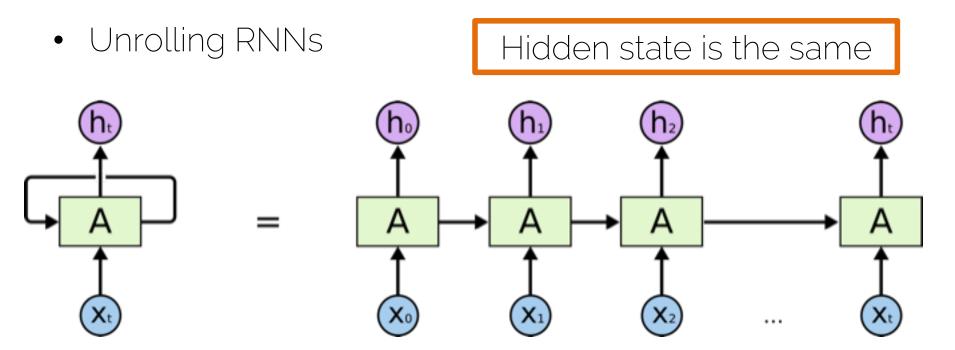
Note: non-linearities ignored for now

• We want to have notion of "time" or "sequence"



$$\mathbf{A}_{t} = \boldsymbol{\theta}_{c} \mathbf{A}_{t-1} + \boldsymbol{\theta}_{x} \mathbf{x}_{t}$$
$$\mathbf{h}_{t} = \boldsymbol{\theta}_{h} \mathbf{A}_{t}$$

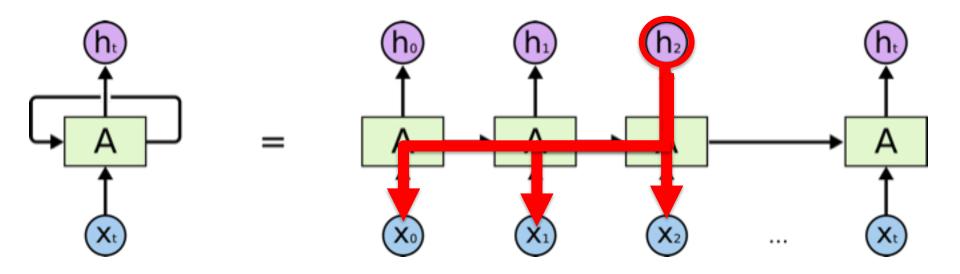
Same parameters for each time step = generalization!



[Christopher Olah] Understanding36STMs

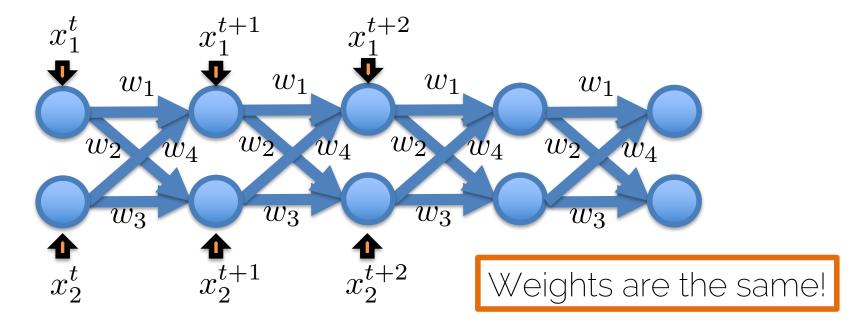
Basic structure of a RNN

• Unrolling RNNs



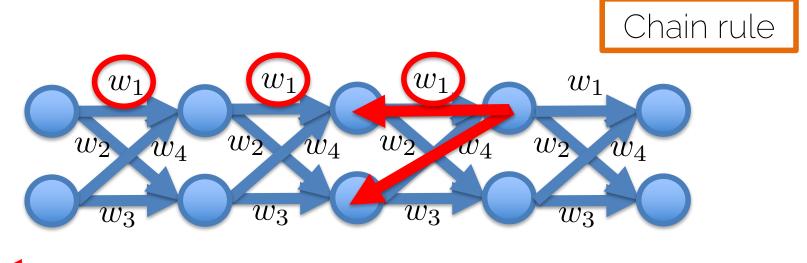
Basic structure of a RNN

• Unrolling RNNs as feedforward nets



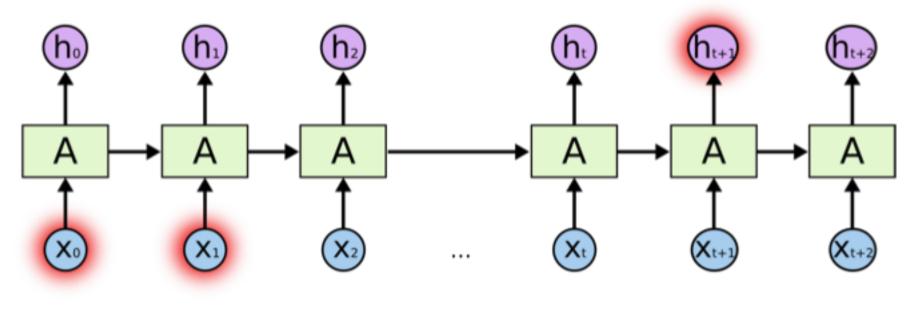
Backprop through a RNN

• Unrolling RNNs as feedforward nets



All the way to t=0

Add the derivatives at different times for each weight Prof. Leal-Taixé and Prof. Niessner



I moved to Germany ...

so I speak German fluently

• Simple recurrence $\mathbf{A}_t = \boldsymbol{\theta}_c \mathbf{A}_{t-1} + \boldsymbol{\theta}_x \mathbf{x}_t$ • Let us forget the input $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$ Same weights are

Long-term dependencies

multiplied over and over again

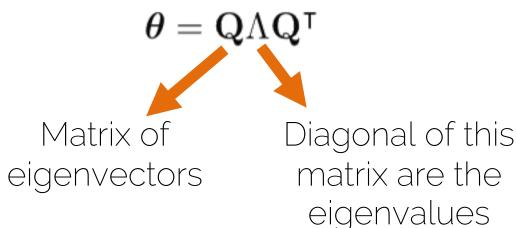
• Simple recurrence $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$

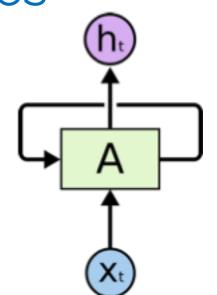
What happens to small weights? Vanishing gradient

What happens to large weights? Exploding gradient

Prof. Leal-Taixé and Prof. Niessner

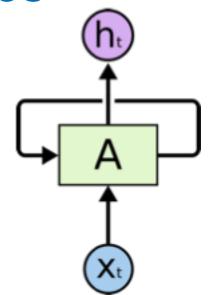
- Simple recurrence $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$
- If $\boldsymbol{\theta}$ admits eigendecomposition





- Simple recurrence $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$
- If $\boldsymbol{\theta}$ admits eigendecomposition

 $\boldsymbol{\theta} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathsf{T}}$



- Orthogonal heta allows us to simplify the recurrence

$$\mathbf{A}_t = \mathbf{Q} \Lambda^t \mathbf{Q}^\intercal \mathbf{A}_0$$

• Simple recurrence $\mathbf{A}_t = \mathbf{Q} \Lambda^t \mathbf{Q}^\mathsf{T} \mathbf{A}_0$

What happens to eigenvalues with magnitude less than one?

Vanishing gradient

What happens to eigenvalues with magnitude larger than one?

Exploding gradient
Gradient

• Simple recurrence $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$

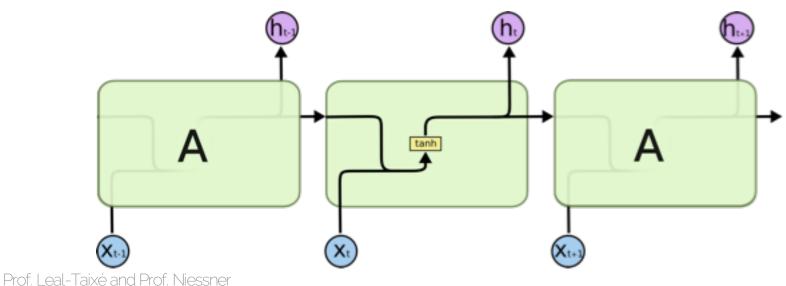
Let us just make a matrix with eigenvalues = 1

Allow the **cell** to maintain its "state"

Vanishing gradient

• 1. From the weights $\mathbf{A}_t = \boldsymbol{\theta}^t \mathbf{A}_0$

• 2. From the activation functions (tanh)



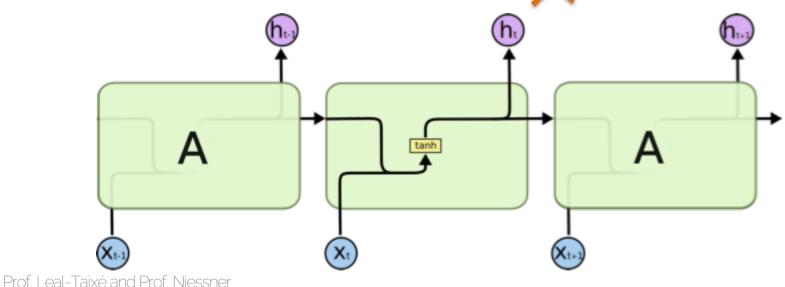
tasha 1.0 k

0.5

-1.0

Vanishing gradient

- 1. From the weights $\mathbf{A}_t = \mathbf{\mathbf{J}}^t \mathbf{A}_0$
- 2. From the activation functions (tach)

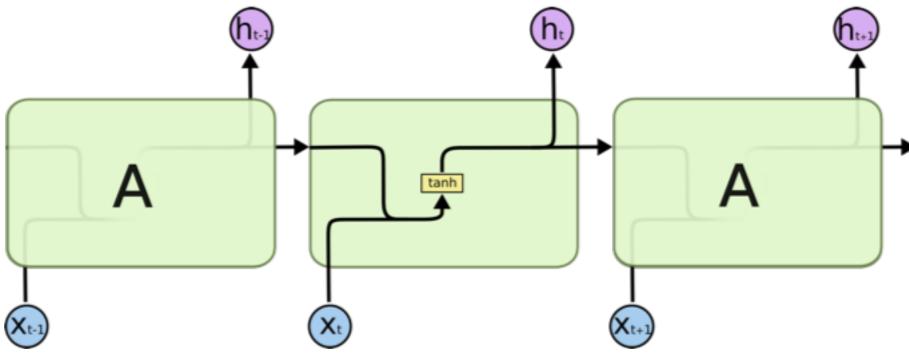


Long Short Term Memory

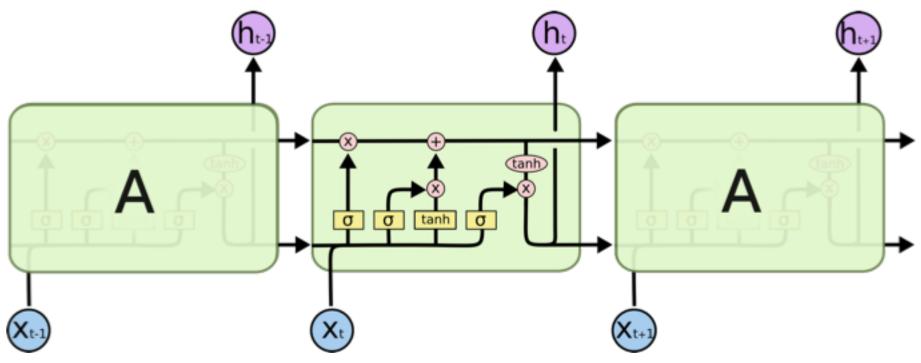
Prof. Leal-Taixé and Prof. Niessner

Hochreiter and Schmidhub@ 1997

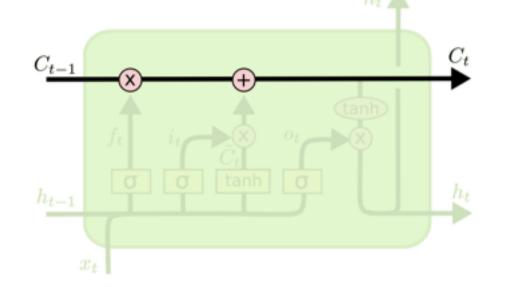
• Simple RNN has tanh as non-linearity



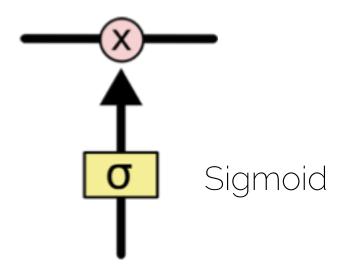
• LSTM



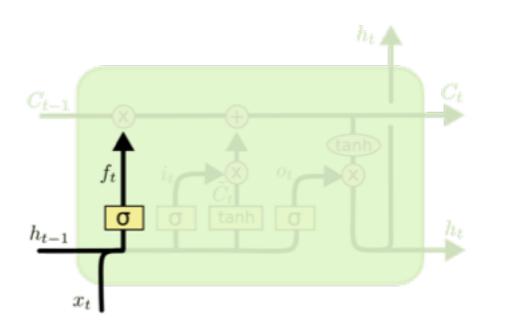
- Key ingredients
- Cell = transports the information through the unit



- Key ingredients
- Cell = transports the information through the unit
- Gate = remove or add information to the cell state



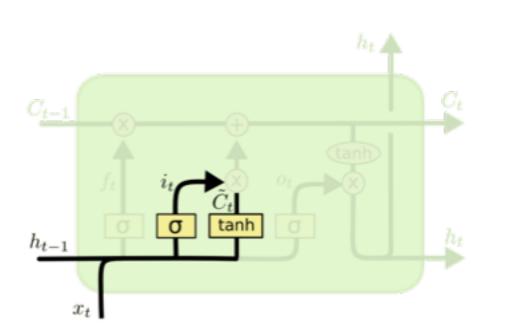
• Forget gate



Decides when to erase the cell state

Sigmoid = output between 0 (forget) and 1 (keep)

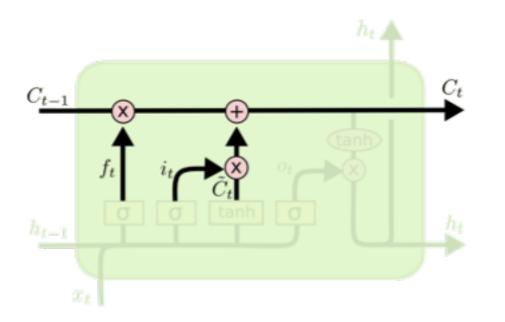
• Input gate



Decides which values will be updated

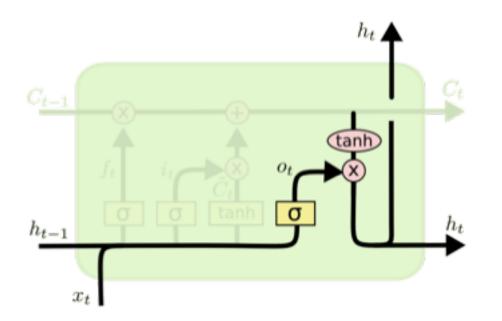
New cell state, output from a tanh (-1,1)

• Element-wise operations



Prof. Leal-Taixé and Prof. Niessner

• Output gate



Decides which values will be outputted

Output from a tanh (-1,1)

Prof. Leal-Taixé and Prof. Niessner

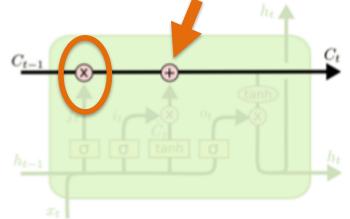
- Forget gate $\mathbf{f}_t = Sigm(\boldsymbol{\theta}_{xf}\mathbf{x}_t + \boldsymbol{\theta}_{hf}\mathbf{h}_{t-1} + \mathbf{b}_f)$
- Input gate $\mathbf{i}_t = Sigm(\boldsymbol{\theta}_{xi}\mathbf{x}_t + \boldsymbol{\theta}_{hi}\mathbf{h}_{t-1} + \mathbf{b}_i)$
- Output gate $\mathbf{o}_t = Sigm(\boldsymbol{\theta}_{xo}\mathbf{x}_t + \boldsymbol{\theta}_{ho}\mathbf{h}_{t-1} + \mathbf{b}_o)$
- Cell update $\mathbf{g}_t = Tanh(\boldsymbol{\theta}_{xg}\mathbf{x}_t + \boldsymbol{\theta}_{hg}\mathbf{h}_{t-1} + \mathbf{b}_g)$
- Cell $\mathbf{C}_t = \mathbf{f}_t \odot \mathbf{C}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t$
- Output $\mathbf{h}_t = \mathbf{o}_t \odot Tanh(\mathbf{C}_t)$

LSTM: vanishing gradients?

• 1. From the weights

• 2. From the activation functions

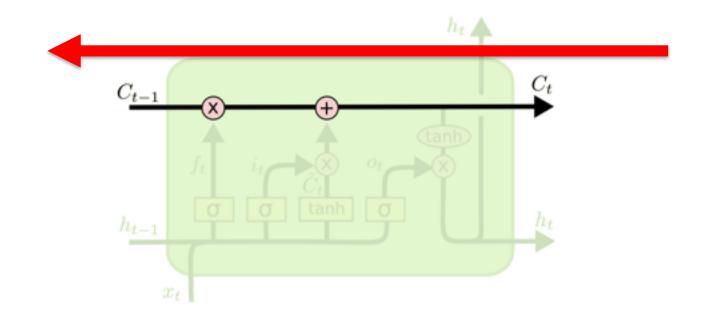
1 for important information



• Cell
$$\mathbf{C}_t = \mathbf{f}_t \odot \mathbf{C}_{t-1} + \mathbf{i}_t \odot \mathbf{g}_t$$

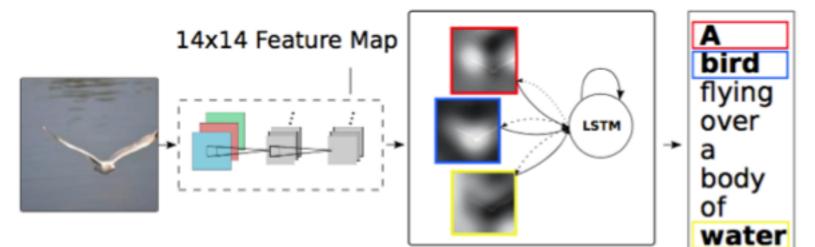
weights Identity function

• Highway for the gradient to flow



RNN's in Computer Vision

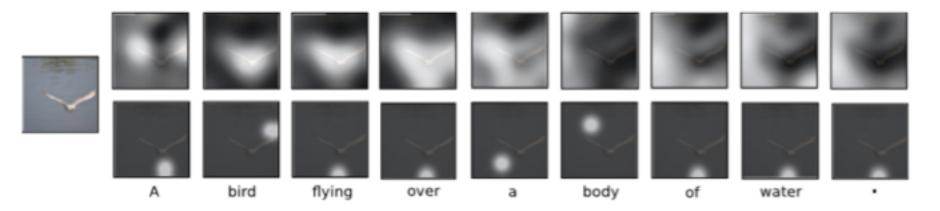
Caption generation



1. Input 2. Convolutional 3. RNN with attention 4. Word by Image Feature Extraction over the image word generation

RNN's in Computer Vision

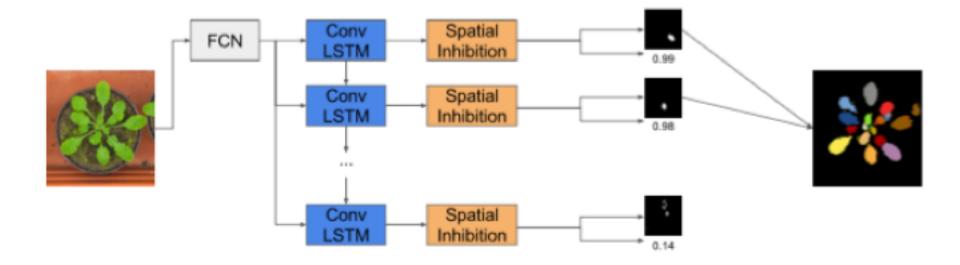
Caption generation



• Focus is shifted to different parts of the image

RNN's in Computer Vision

• Instance segmentation



Final exam

Prof. Leal-Taixé and Prof. Niessner

Final exam

- Multiple choice questions
- Series of questions with free answer
- There can be questions related to the exercises → if you did the exercises it will be easier for you to answer them

Final exam

- Must-know topics:
 - Basics of ML \rightarrow from linear classifier to NN
 - Optimization schemes (not necessary to know all the formulas, but to have a good understanding of the differences between them and their behavior
 - Backpropagation: concept, math, hint: be fluent at computing backprop by hand
 - Loss functions and activation functions
 - CNN: convolution, backprop
 - RNN, LSTMs

Admin

• Exam date: July 16th at 08:00

• There will NOT be a retake exam

• No cheat sheet nor calculator during the exam

Next semesters: new DL courses

Prof. Leal-Taixé and Prof. Niessner

Deep Learning at TUM

• Keep expanding the courses on Deep Learning

• This Introduction to Deep Learning course is the basis for a series of Advanced DL lectures on different topics

• Advanced topics are typically only for Master students

Deep Learning at TUM DL for DL in Medical Robotics (Bäuml) Applicat. (Menze) Intro to Machine Deep Learning (Günnemann) earninc DL for DL for Vision Physics (Thuerey) (Niessner, Leal-Taixe)

Prof. Leal-Taixé and Prof. Niessner

Advanced DL for Computer Vision

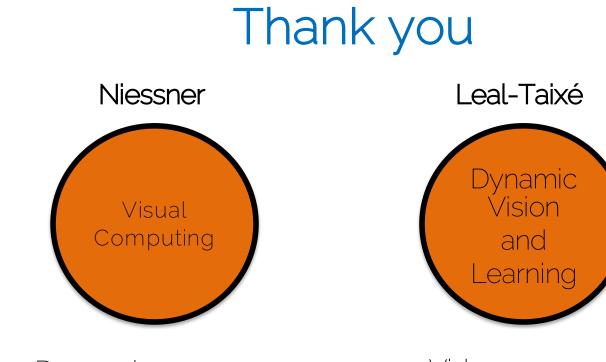
- Deep Learning for Vision (WS18/19): syllabus
 - Advanced architectures, e.g. Siamese neural networks
 - Variational Autoencoders
 - Generative models, e.g. GAN,
 - Multi-dimensional CNN
 - Bayesian Deep Learning

Advanced DL for Computer Vision

- Deep Learning for Vision (WS18/19)
 - **-** 2 ∨ + 5 P
 - Must have attended the Intro to DL
 - Practical part is a project that will last the whole semester
 - Please do not sign up unless you are willing to spend a lot of time on the project!

Detection, Segmentation and Tracking

- New lecture (Prof. Leal-Taixé, SS19)
 - Must have attended the Intro to DL
 - Common detection and segmentation frameworks (YOLO, Faster-RCNN, Mask-RCNN)
 - Extension to videos \rightarrow tracking
 - One project that will last the whole semester



- 3D scanning
- DL in 3D understanding
- 3D reconstruction

- Video segmentation
- Object tracking
- Camera localization