Multi-Object Tracking Challenge
Multi-Object Tracking
Multi-Object Tracking

- Origins
 - SONAR, RADAR

- Given a raw stream of sensory data:
 - Localize objects
 - Estimate object identities over time
 - Estimate when objects enter and leave sensing area
VISON-BASED MULTI-OBJECT TRACKING
Vision-based Multi-Object Tracking

- Vision-based tracking
 - Sensor: camera
 - How to obtain the evidence for the presence of objects?
 - Tracking-by-detection
Challenge
Challenge

- **Given:** a baseline multi-object tracker
- **Task:** improve its tracking performance by applying different techniques from the lecture
- **Tracking-by-detection** paradigm
 - Apply object detector to each frame independently
 - Data association
- **The challenge:** connect the detections of the same object and produce identity preserving tracks
Dataset

- MOTChallenge MOT16 dataset https://motchallenge.net/
- Define your own train/validation splits, on which you can validate your design decisions and hyper-parameters
- You will evaluate your final model on test sequences
- We will provide them at the end of the semester
 - You will not be given access to the ground-truth
 - You will upload your results to our evaluation server
Evaluation

- Multi-Object Tracking Accuracy and Precision

\[
\text{MOTA} = 1 - \frac{\sum_t (FP_t + FN_t + IDS_t)}{\sum_t M_t}
\]

\[
\text{MOTP} = \frac{\sum_t \sum_{n,m} d_{tnm} a^*_{tnm}}{\sum_t |TP_t|}
\]
What Do We Provide?

- Google collab platform:
 - Dataset (MOT16 train split)
 - Object detector (Faster R-CNN, trained on our data)
 - Simple tracking baseline
 - Ground-truth tracks for supervision
 - Evaluation scripts
 - Instance segmentation masks for training

https://colab.research.google.com/drive/18uAKz1qMLvsr2h1w9tSk1zlMekhi-lUU
Baseline Tracker

- Frame-by-frame detections (Faster R-CNN)
- **Association:** intersection-over-union (IoU)

- **Initialize** new tracks from non-associated detections
- **Remove** tracks that can not be extended with detections
Directions

● Object detection
 ○ Tracking performance depends on the detection quality
 ○ Detections provide signal for track initialization and termination

● Tracking
 ○ Assign correct identities to detected objects
 ○ Cope with occlusions, missing detections and false positives

● Leverage additional cues, e.g.,
 ○ Segmentation masks
 ○ Optical flow
 ○ Semantic segmentation
Rules and Timeline
Timeline

- Submission deadline: TBA

- Top 60% performers (based on MOTA) will get the bonus!

- Top K-performers will present their work in the week after the lectures (date: TBA, K: TBA)
Rules

- **NOES**
 - No teams!
 - Do not copy code from the internet!
 - You cannot use better of-the-shelf detectors!
 - You cannot use of-the-shelf trackers!

- **YESES**
 - Use any additional source of information:
 - Segmentation masks
 - Semantic segmentation, optical flow
 - ... (see lectures!)

 Improvements on detection/tracking side you need to implement yourself. This is your individual work!

Feel free to use external code here.
THANK YOU FOR YOUR\nATTENTION! HAVE FUN AND\nBE CREATIVE ;}