

Semantic segmentation

CV3DST | Prof. Leal-Taixé

Task definition: semantic segmentation

Semantic Segmentation

- Every label in the image needs to be labelled with a category label.

- Do not differentiate between the instances (see how we do not differentiate between pixels coming from different cows).

Fully Convolutional Networks

Fully convolutional neural networks

• A FCN is able to deal with any input/output size

Long, Shelhamer, Darrell - Fully Convolutional Networks for Semantic Segmentation, CVPR 2015, PAMI 2016

Fully convolutional neural networks

- 1. Replace FC layers with convolutional layers.
- 2. Convert the last layer output to the original resolution.
- 3. Do softmax-cross entropy between the pixelwise predictions and segmentaion ground truth.
- 4. Backprop and SGD

"Convolutionalization"

"Convolutionalization"

See a more detailed explanation in this <u>quora answer</u>.

In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution kernels and a full connection table.

It's a too-rarely-understood fact that ConvNets don't need to have a fixedsize input. You can train them on inputs that happen to produce a single output vector (with no spatial extent), and then apply them to larger images. Instead of a single output vector, you then get a spatial map of output vectors. Each vector sees input windows at different locations on the input. In that scenario, the "fully connected layers" really act as 1x1 convolutions.

Semantic Segmentation (FCN)

• Fully Convolutional Networks for Semantic Segmentation

How do we upsample?

Long, Shelhamer, Darrell - Fully Convolutional Networks for Semantic Segmentation, CVPR 2015, PAMI 2016

Predict the segmentation mask from high level features

Predict the segmentation mask from high level features

Predict the segmentation mask from high level features

Qualitative results

CV3DST | Prof. Leal-Taixé

Qualitative results

SDS is an R-CNN-based method, i.e., it uses object proposals. In general, FCN outperforms significantly (both qualitatively and quantitatively) pre-deep learning and quasi-deep learning methods and is recognized as the AlexNet of semantic segmentation.

Autoencoder-style architecture

• Step-wise upsampling

SegNet

• Encoder: normal convolutional filters + pooling

• **Decoder**: Upsampling + convolutional filters

SegNet

• Encoder: normal convolutional filters + pooling

• **Decoder**: Upsampling + convolutional filters

SegNet

• Encoder: normal convolutional filters + pooling

• **Decoder**: Upsampling + convolutional filters

• The convolutional filters in the decoder are learned using backprop and their goal is to refine the upsampling

Transposed convolution

- Transposed convolution
 - Unpooling
 - Convolution filter (learned)
 - Also called up-convolution
 (never deconvolution)

SegNet

- Encoder: normal convolutional filters + pooling
- Decoder: Upsampling + convolutional filters
- Softmax layer: The output of the soft-max classifier is a K channel image of probabilities where K is the number of classes.

CV3DST | Prof. Leal-Taixé

Upsampling

• 1. Interpolation

• 1. Interpolation

Original image 🛛 🕷 🗴 10

Nearest neighbor interpolation Bilinear interpolation

Bicubic interpolation

Image: Michael Guerzhoy

• 1. Interpolation

Few artifacts

A. Dosovitskiy, "Learning to Generate Chairs, Tables and Cars with Convolutional Networks". TPAMI 2017

• 3. Unpooling: "à la DeconvNet"

CV3DST | Prof. Leal-Taixé

• 3. Unpooling: "à la DeconvNet"

Keep the details of the structures

Skip connections (U-Net)

Skip Connections

• U-Net Pass the low-64 64 level information input image ► tile High-level 128 128 256 128 information Recall ResNet 256 256 → conv 3x3, ReLU copy and crop 512 max pool 2x2

O. Ronneberger et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation". MICCAI 2015

1024

output

map

↓ up-conv 2x2

➡ conv 1x1

segmentation

Skip Connections

O. Ronneberger et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation". MICCAI 2015

Skip Connections

Concatenation connections

C. Hazirbas et al. "Deep depth from focus". ACCV 2018

CV3DST | Prof. Leal-Taixé

39

DeepLab

DeepLab

Semantic Segmentation: 3 challenges

- Reduced feature resolution
 - Proposed solution: Atrous convolutions
- Objects exist at multiple scales
 Proposed solution: Pyramid pooling, as in detection.
- Poor localization of the edges
 - Proposed solution: Refinement with Conditional Random Field (CRF)

Semantic Segmentation: 3 challenges

- Reduced feature resolution
 - Proposed solution: Atrous convolutions
- Objects exist at multiple scales
 Proposed solution: Pyramid pooling, as in detection.
- Poor localization of the edges
 Proposed solution: Refinement with Conditional Random Field (CRF)

Wish: no reduced feature resolution

Fully Convolutional Network

Super expensive!

Alternative: Dilated (atrous) convolutions

Sparse feature extraction with standard convolution on a low resolution input feature map.

Alternative: Dilated (atrous) convolutions

Sparse feature extraction with standard convolution on a low resolution input feature map.

Dense feature extraction with atrous convolution with rate r=2, applied on a high resolution input feature map.

Dilated (atrous) convolutions 1D

(a) Sparse feature extraction with standard convolution on a low resolution input feature map.

(b) Dense feature extraction with atrous convolution with rate r = 2, applied on a high resolution input feature map.

(b) Dense feature extraction

Dilated (atrous) convolutions in 2D

Standard convolution has dilation 1 An analogy for dilated conv is a conv filter with holes

class torch.nn.Conv2d (in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=2)

class torch.nn.ConvTranspose2d (*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=2*)

Dilated (atrous) convolutions 2D

(a) the dilation parameter is 1, and each element produced by this filter has reception field of 3×3. (b) the dilation parameter is 2, and each element produced by it has reception field of 7x7. (c) the dilation parameter is 4, and each element produced by it has reception field of 15x15.

Dilated (atrous) convolutions 2D

Each layer has the same number of parameters, but the receptive field grows exponentially while the number of parameters grows linearly.

Semantic Segmentation: 3 challenges

- Reduced feature resolution
 - Proposed solution: Atrous convolutions
- Objects exist at multiple scales
 Proposed solution: Pyramid pooling, as in detection.
- Poor localization of the edges
 - Proposed solution: Refinement with Conditional Random Field (CRF)

Conditional Random Fields (CRF)

• Boykov and Jolly (2001)

$$E(x,y) = \sum_{i} \varphi(x_i, y_i) + \sum_{ij} \psi(x_i, x_j)$$

- Variables
 - ► x_i: Binary variable
 - \star foreground/background
 - ► y_i: Annotation
 - * foreground/background/empty
- Unary term
 - $\varphi(x_i, y_i) = K[x_i \neq y_i]$
 - Pay a penalty for disregarding the annotation
- Pairwise term
 - $\psi(x_i, x_j) = [x_i \neq x_j] w_{ij}$
 - Encourage smooth annotations
 - *w_{ij}* affinity between pixels *i* and *j*

Effect of number of iterations of CRF

Score map (input before softmax function) and belief map (output of softmax function) for Aeroplane. The image shows the score (1st row) and belief (2nd row) maps after each mean field iteration. The output of last DCNN layer is used as input to the mean field inference.

DeepLab: qualitative results

DeepLab: qualitative results

DeepLab: qualitative results

(a) Image

(b) G.T.

(c) Before CRF

Problems with CRF

- The network is not trained end-to-end. The FCN and the CRF are trained independently from each other.
- This makes the training both slow and arguably suboptiomal.

Solution: Formulate CRF as an Recurrent Neural Network

Zheng et al., Conditional Random Fields as Recurrent Neural Networks, ICCV 2015

Replacing CRF with an RNN

Zheng et al., Conditional Random Fields as Recurrent Neural Networks, ICCV 2015

CRF-RNN: qualitative results

CRF-RNN: qualitative results

CV3DST | Prof. Leal-Taixé

Why do we need the CRF?

• To properly localize the masks, i.e., get the contours correctly

 We need to process information at the original (image) resolution for this. We need to look at the pixels. → CRF is conditioned on the RGB image.

• What if we use attention?

Attention

The problem

• For very long sentences, the score for machine translation really goes down after 30-40 words.

Bahdanau et al 2014. Neural machine translation by jointly learning to align and translate.

Basic structure of a RNN

• We want to have notion of "time" or "sequence"

[Christopher Olah] Understanding LSTMs

Basic structure of a RNN

• We want to have notion of "time" or "sequence"

 $\mathbf{A}_t = \boldsymbol{\theta}_c \mathbf{A}_{t-1} + \boldsymbol{\theta}_x \mathbf{x}_t$

Parameters to be learned

Prof. Leal-Taixé and Prof. Niessner Basic structure of a RNN

• We want to have notion of "time" or "sequence"

$$\mathbf{A}_t = \boldsymbol{\theta}_c \mathbf{A}_{t-1} + \boldsymbol{\theta}_x \mathbf{x}_t$$

$$\mathbf{h}_t = \boldsymbol{\theta}_h \mathbf{A}_t$$

Same parameters for each time step = generalization! Prof. Leal-Taixé and Prof. Niessner Basic structure of a RNN

[Christopher Olah] Understanding LSTMs

Prof. Leal-Taixé and Prof. Niessner Basic structure of a RNN

• Unrolling RNNs

Long-term dependencies

I moved to Germany ...

so I speak German fluently

Attention: intuition

ATTENTION: Which hidden states are more important to predict my output?

I moved to Germany ...

so I speak German fluently

I moved to Germany ...

so I speak German fluently

Attention: architecture

• A decoder processes the information

- Decoders take as input:
 - Previous decoder hidden state
 - Previous output
 - Attention

Attention

• $\alpha_{1,t+1}$ indicates how much the word in the position 1 is important to translate the work in position t+1

• The context aggregates the attention

$$c_{t+1} = \sum_{k=1}^{t+1} \alpha_{k,t+1} a_k$$

• Soft attention: All attention masks alpha sum up to 1

Prof. Leal-Taixé and Prof. Niessner Computing the attention mask

• We can train a small neural network

Attention for semantic segmentation

The attention model learns to put different weights on objects of different scales.

For example, the model learns to put large weights on the small-scale person (green dashed circle) for features from scale = 1, and large weights on the large-scale child (magenta dashed circle) for features from scale = 0.5. We jointly train the network component and the attention model. • Do we even need these blocks which include the global information (CRF, RNN, attention)?

Spoiler alert: Not neccesarly.

DeepLabv3+

(a) Spatial Pyramid Pooling

(b) Encoder-Decoder

(c) Encoder-Decoder with Atrous Conv

Combine atrous convolutions and spatial pyramid pooling with an encoder-decoder module.

Delving deeper into DeepLabv3+

Delving deeper into DeepLabv3+

CV3DST | Prof. Leal-Taixé

Delving deeper into DeepLabv3+

CV3DST | Prof. Leal-Taixé

Normal convolutions act on all channels.

Filters are applied only at certain depths of the features. Normal convolutions have groups set to 1, the convolutions used in this image have groups set to 3.

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But the depth size is always the same!

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

But why?

Original convolution 256 kernels of size 5x5x3

Multiplications: 256x5x5x3 x (8x8 locations) = 1.228.800

But why?

Original convolution 256 kernels of size 5x5x3

Multiplications: 256x5x5x3 x (8x8 locations) = 1.228.800

Depth-wise convolution 3 kernels of size 5x5x1

256 kernels of size 1x1x3

1x1 convolution

Multiplications: 5x5x3 x (8x8 locations) = 4800

Less computations!

Multiplications: 256x1x1x3x (8x8 locations) = 49152

DeepLabv3+: qualitative results

Still considered as SOTA!

Chen et al., Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, ECCV 2018

ТΠ

DeepLab is amazing, but there are other important architectures to know.

Recommended reads

RefineNet

Many building blocks but the goal is the same: use convolutional layers to refine the information coming from different scales.

Lin et al., RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation, CVPR 2017

Similar idea to RefineNet (fuse information from multiple scales), but the features here are shared (and the multi-scaling comes from pooling). The method is simpler than RefineNet and performs slightly better.

Datasets and metrics

Datasets

Pascal VOC 2012:

9993 natural images divided into 20 classes. Cityscapes:

25K urbanstreet images divided into 30 classes. ADE20K:

25K (20 stands for 20K training) scene-parsing images divided into 150 classes. Mapillary Vistas:

25K street level images, divided into 152 classes.

Models are often pre-trained in the large MS-COCO dataset, before finetuned to the specific dataset.

Metrics: intersection over union (IoU)

Metrics: intersection over union (IoU)

Metrics: mean intersection over union (mIoU)

MIOU simply computes the IOU for each class and then computes the mean of those values.

Another widely used metric is the pixel accuracy (ratio of pixels classified correctly).

So, what model to use?

- Typically DeepLab models are considered to be good baselines. Nevetheless, different problems might require different models (no free lunch in deep learning).
- Don't be a hero! Before making up your own model, use some of the SOTA models, for example the best performing model in <u>PASCAL</u> <u>VOC</u>.

CV3DST Competition

- The tracking challenge is evaluated on a subset of the MOT16 test data. (Sequences 01, 03, 08, 12)
- The training data can be downloaded from the MOT challenge website: https://motchallenge.net/data/MOT16/
- The submission website
 is https://admg.in.tum.de/embed.php/prakt/cv3dst
- You will have to sign with your matriculation number to get your account. If you do not have a TUM matriculation number, please send a mail to <u>dst@dvl.in.tum.de</u>
- Every student only has 1 ACCOUNT.
- You are allowed to submitt 4 TIMES to the challenge. Always the most recent submission is considered for the bonus (BE CAREFUL, YOU CAN WORSEN YOUR RESULTS)

CV3DST Competition

 In order to be eligible for the bonus you will need to achieve a MOTA > Threshold (tbd)

• Every student has to submit their own results (we will check code and results!).

CV3DST Competition

- Dates:
 - 15.01.20: Test set is open for submission!
 - 02.02.20 (midnight): Competition closes
 - 03.02.20 (midnight): Abstract and code submission deadline
 - 04.02.20: Presenters are announced
 - 07.02.20: Presentation of selected methods

Next lectures

• Instance segmentation and panoptic segmentation

• Next lecture on January 17th.