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Task definition

• Object detection problem
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• Object detection problem
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A bit of history
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
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Image
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much do the pixels 
in the image and 
template correlate 

LOW 
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
– Occlusions: we need to see the WHOLE object
– This works to detect a given instance of an object but not 

a class of objects
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Appearance and 
shape changes

Pose changes
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
– Occlusions: we need to see the WHOLE object
– This works to detect a given instance of an object but not 

a class of objects
– Objects have an unknown position, scale and aspect

ratio, the search space is searched inefficiently with 
sliding window
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Traditional object detection methods

• 2. Feature extraction + classification
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Viola-Jones detector

• 2. Feature extraction + classification
– Learning multiple weak learners to build a strong

classifier
– That is, make many small decisions and combine them 

for a stronger final decision
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Viola-Jones detector

• 2. Feature extraction + classification
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

Haar features
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Viola-Jones detector
• 2. Feature extraction + classification

– Step 1: Select your Haar-like features
– Step 2: Integral image for fast feature evaluation

• I can evaluate which parts of the image have highest cross-
correlation with my feature (template)

– Step 3: AdaBoost for to find weak learner
• I cannot possibly evaluate all features at test time for all

image locations
• Learn the best set of weak learners 
• Our final classifier is the linear combination of all weak

learners 
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Viola-Jones detector
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Histogram of Oriented Gradients

• 2. Feature extraction + classification
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Average gradient image over training samples à gradients provide 
shape information. Let us create a descriptor that exploits that.

Gradient: blue arrows show the 
gradient, i.e., the direction of 
greatest change of the image.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Histogram of Oriented Gradients

• 2. Feature extraction + classification
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HOG descriptor à Histogram of oriented gradients.
Compute gradients in dense grids, compute gradients and create a 
histogram based on gradient direction.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Histogram of Oriented Gradients

• 2. Feature extraction + classification
– Step 1: Choose your training set of images that contain 

the object you want to detect.
– Step 2: Choose a set of images that do NOT contain that 

object.

– Step 3: Extract HOG features on both sets.
– Step 4: Train an SVM classifier on the two sets to detect 

whether a feature vector represents the object of interest
or not (0/1 classification).
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Histogram of Oriented Gradients

• 2. Feature extraction + classification
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HOG features weighted by the positive SVM weights – the ones 
used for the pedestrian object classifier.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Deformable Part Model

• Also based on HOG features, but based on body part 
detection à more robust to different body poses

21Felzenszwalb et al. A discriminatively trained, multiscale, deformable part model. CVPR 2008.CV3DST | Prof. Leal-Taixé



How to move 
towards general 
object detection?
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What defines an object?

• We need a generic, class-agnostic objectness
measure: how likely it is for an image region to 
contain an object
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Very likely to be 
an object

Maybe it is an 
object

CV3DST | Prof. Leal-Taixé



What defines an object?

• We need a generic, class-agnostic objectness
measure: how likely it is for an image region to 
contain an object

• Using this measure yields a number of candidate 
object proposals or regions of interest (RoI) where to 
focus.
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+ classifier
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Object proposal methods

• Selective search: van de Sande et al. Segmentation 
as selective search for object recognition. ICCV 2011.

• Edge boxes: Zitnick and Dollar. Edge boxes: locating
object proposals from edges. ECCV 2014.
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Do we want all proposals?

• Many boxes trying to explain one object
• We need a method to keep only the “best” boxes
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Non-Maximum Suppression (NMS)

• Many boxes trying to explain one object
• We need a method to keep only the “best” boxes
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Non-Maximum Suppression (NMS)
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Start with anchor box i

For another box j
If they overlap

Discard box i if the
score is lower than
the score of j

Overlap = to be defined Score = depends on the task
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Region overlap

29

• We measure region overlap with the Intersection 
over Union (IoU) or Jaccard Index: 

Intersection Union
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Region overlap
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• We measure region overlap with the Intersection 
over Union (IoU) or Jaccard Index: 

Intersection Union
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Non-Maximum Suppression (NMS)
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Start with anchor box i

For another box j
If they overlap

Discard box i if the
score is lower than
the score of j

Overlap = to be defined Score = depends on the task
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NMS: the problem

32Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth positions
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NMS: the problem

• Choosing a narrow threshold

33Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth positions

False positives

Low Precision
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NMS: the problem

• Choosing a wider threshold

34Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth position

False positive
Low Recall

False negative
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Non-Maximum Suppression (NMS)

• NMS will be used at test time. Most detection 
methods (even Deep Learning ones) use NMS!
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Detection evaluation
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Evaluation measures
• For each image and each class independently, rank 

the predicted detections by descending order of 
confidence (score).

• Assign each detection to the ground truth detection 
of maximum overlap (IoU) if the overlap is above a 
threshold (typically 0.5 or 0.7 IoU).

• Mark that detection as a true positive.
• One ground truth detection can be assigned to one

predicted detection only.

37Russakovsky et al. Imagenet Large Scale Visual Recognition Challenge. IJCV 2015.CV3DST | Prof. Leal-Taixé
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Object detection datasets
• PASCAL VOC 2007-12: 20 classes; images 5-11k train/val, 

5-11k test (public for 2007)
• ImageNet ILSVRC 2010-17: 200 classes (subset or merged

from classication task); images 400-450k train (partially
annotated), 20k val, 40k test

• COCO 2015-: 80 classes; images 80k train, 40k val
(115k/5k in 2017), 40k test, 120k unlabeled; smaller objects

• Open Images 2018-: 600 classes; images 1:74M train, 41k 
val, 125k test
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Everingham et al. IJCV 2015. The PASCAL Visual Object Classes Challenge: a Retrospective.
Russakovsky et al. IJCV 2015. Imagenet Large Scale Visual Recognition Challenge.
Lin et al. ECCV 2014. Microsoft COCO: Common Objects in Context.
Kuznetsova et al. 2018. The Open Images Dataset V4: Unied image classication, object detection, 
and visual relationship detection at scale.CV3DST | Prof. Leal-Taixé



Learning-based
detectors
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Types of object detectors

• One-stage detectors

• Two-stage detectors
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Feature 
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Types of object detectors

• One-stage detectors
– YOLO, SSD, RetinaNet
– CenterNet, CornerNet, ExtremeNet

• Two-stage detectors
– R-CNN, Fast R-CNN, Faster R-CNN
– SPP-Net, R-FCN, FPN
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Two-stage 
detectors
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Types of object detectors

• One-stage detectors

• Two-stage detectors

44

Feature 
extraction

Extraction of
object

proposals

Classification

Localization

Class score (cat, 
dog, person)

Refine bounding box 
(Δx, Δy, Δw, Δh)

Image

Feature 
extraction

Classification

Localization

Class score (cat, 
dog, person)

Bounding box 
(x,y,w,h)

Image

CV3DST | Prof. Leal-Taixé



Localization

• Bounding box regression

45

Image

Output:
Box coordinates  (x,y,w,h)Feature extraction 

(this time with a 
Neural Network)

Ground truth: Box 
coordinates

Lecture 8 - 12
CV3DST | Prof. Leal-Taixé

L2 loss function



Localization

• Bounding box regression

46

Image

Output:
Box coordinates  (x,y,w,h)

Ground truth: Box 
coordinates

Lecture 8 - 12
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L2 loss function
Convolutional 
Neural Network



Localization and classification

• Bounding box regression

47

Image

Output:
Box coordinates  (x,y,w,h)

Lecture 8 - 12
CV3DST | Prof. Leal-Taixé

Convolutional 
Neural Network

Fully connected



Localization and classification

• Bounding box regression
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Image

Output:
Box coordinates  (x,y,w,h)

Lecture 8 - 12
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Convolutional 
Neural Network

Fully connected

Output:
Class scores

L2 loss

Softmax loss



Localization and classification

• Bounding box regression
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Image

Output:
Box coordinates  (x,y,w,h)

Lecture 8 - 12
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Convolutional 
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Output:
Class scores

Regression head

Classification 
head



Localization and classification

• Bounding box regression
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Image

Output:
Box coordinates  (x,y,w,h)

Lecture 8 - 12
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Convolutional 
Neural Network

Output:
Class scores

Regression head



Localization and classification

• It was typical to train the classification head first, 
freeze the layers

• Then train the regression head

• At test time, we use both!
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image
(221 x 221 x 3)

Boxes
(1000 x 4)

Lecture 8 - 12
CV3DST | Prof. Leal-Taixé

Convolutional 
Neural Network Class scores

1000

Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014

Feature map 
(5 x 5 x 1024)



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)

Lecture 8 - 12
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)

Lecture 8 - 12
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014

We end up with 
many predictions 
and we have to 
combine them for a 
final detection (in 
Overfeat they have 
a greedy method)



Overfeat

• Sliding window + box regression + classification
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Image (468 x 356 x 3)
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014

We end up with 
many predictions 
and we have to 
combine them for a 
final detection (in 
Overfeat they have 
a greedy method)



Overfeat

• In practice: use many sliding window locations and
multiple scales

Lecture 8 - 31

Window positions + score maps Box regression outputs Final Predictions
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



Overfeat

• Sliding window + box regression + classification
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Image
(221 x 221 x 3)

Boxes
(1000 x 4)

Lecture 8 - 12
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Convolutional 
Neural Network Class scores

1000

Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014

Feature map 
(5 x 5 x 1024)

What prevents us from dealing with any image size?



Overfeat

Training time: Small image, 1  
x 1 classifier output

Lecture 8 - 34

Test time: Larger image, 2 x 2  
classifier output, only extra  
compute at yellow regions
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Sermanet et al, “Integrated Recognition, Localization and  Detection using Convolutional Networks”, ICLR 2014



What about multiple objects?
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• Localization:  Regression

• How about detection?



What about multiple objects?
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• Localization:  Regression

• How about detection?

3 objects means 
having an output of 
12 numbers (3 x 4)



What about multiple objects?
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• Localization:  Regression

• How about detection?

14 objects means 
having an output of 
56 numbers (14 x 4)



What about multiple objects?
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• Localization:  Regression
• How about detection?

• Having a variable sized output is not optimal for Neural 
Networks

• There are a couple of workarounds:
– RNN: Romera-Paredes and Torr. Recurrent Instance Segmentation. ECCV 

2016.
– Set prediction: Rezatofighi, Kaskman, Motlagh, Shi, Cremers, Leal-Taixé, 

Reid. Deep Perm-Set Net: Learn to predict sets with unknown permutation
and cardinality using deep neural networks. Arxiv: 1805.00613



Detection as classification?
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• Localization:  Regression
• How about detection? Regression

Is this a Flamingo?

NO



Detection as classification?
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• Localization:  Regression
• How about detection? Regression

Is this a Flamingo?

NO



Detection as classification?
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• Localization:  Regression
• How about detection? Regression

Is this a Flamingo?

YES!



Detection as classification?

69CV3DST | Prof. Leal-Taixé

• Localization:  Regression
• How about detection? Classification

• Problem:
– Expensive to try all possible positions, scales and aspect

ratios
– How about trying only on a subset of boxes with most

potential?



Region Proposals

• We have already seen a method that gives us 
“interesting” regions in an image that potentially 
contain an object

• Step 1: Obtain region 
proposals

• Step 2: Classify them.

Lecture 8 - 49
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The R-CNN family
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R-CNN
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Girschick et al, “Rich feature hierarchies for  accurate object detection and semantic  segmentation”, CVPR 2014



R-CNN
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Girschick et al, “Rich feature hierarchies for  accurate object detection and semantic  segmentation”, CVPR 2014

Warping to a fix 
size 227 x 227

Extract features

Classification headRegression head to 
refine the 

bounding box 
location



R-CNN

• Training scheme:
– 1. Pre-train the CNN on ImageNet
– 2. Finetune the CNN on the number of classes the 

detector is aiming to classify (softmax loss)
– 3. Train a linear Support Vector Machine classifier to 

classify image regions. One SVM per class! (hinge loss)
– 4. Train the bounding box regressor (L2 loss)
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R-CNN

• PROS:
– The pipeline of proposals, feature extraction and SVM 

classification is well-known and tested. Only features are 
changed (CNN instead of HOG).

– CNN summarizes each proposal into a 4096 vector
(much more compact representation compared to HOG)

– Leverage transfer learning: the CNN can be pre-trained 
for image classification with C classes. One needs only to 
change the FC layers to deal with Z classes.
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R-CNN

• CONS:
– Slow! 47s/image with VGG16 backbone. One considers 

around 2000 proposals per image, they need to be 
warped and forwarded through the CNN.

– Training is also slow and complex

– The object proposal algorithm is fixed. Feature extraction 
and SVM classifier are trained separately à not exploiting 
learning to its full potential.
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Let us try to solve this first



SPP-Net
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He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. ECCV 2014.

How do we “pool” 
these features into 

a common size

Frozen



SPP-Net

• It solved the R-CNN problem of being slow at test 
time

• It still has some problems inherited from R-CNN:
– Training is still slow (a bit faster than R-CNN)
– Training scheme is still complex

– Still no end-to-end training
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He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. ECCV 2014.



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016
Girschick, “Fast R-CNN”, ICCV 2015 Slide credit: Ross Girschick

Lecture 8 - 67

Fast R-CNN
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Shared 
computation at 
test time (like 

SPP)



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016
Girschick, “Fast R-CNN”, ICCV 2015 Slide credit: Ross Girschick

Lecture 8 - 67

Fast R-CNN
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Region of 
Interest Pooling



Fast R-CNN: RoI Pooling

• Region of Interest Pooling

81

Image
(N x M x 3)

Boxes
(1000 x 4)

Lecture 8 - 12
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Fast R-CNN: RoI Pooling

• Region of Interest Pooling
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Image
(N x M x 3)

Boxes
(1000 x 4)
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Convolutional 
Neural 

Network

Class scores
1000

Feature map 
(L x K x C) FC layers 

expect a fixed 
size 

(H x W x C)We have to transform 
this feature map into 

size (H x W x C)



Fast R-CNN: RoI Pooling

• Region of Interest Pooling
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Boxes
(1000 x 4)
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Class scores
1000

Feature map 
(L x K x C) FC layers 

expect a fixed 
size 

(H x W x C)

Zoom in



Fast R-CNN: RoI Pooling

• Region of Interest Pooling
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Boxes
(1000 x 4)
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Class scores
1000

Feature map 
(L x K x C) FC layers 
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size 
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Zoom in

We put a H x W 
grid on top



Fast R-CNN: RoI Pooling

• Region of Interest Pooling
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Boxes
(1000 x 4)
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Class scores
1000

Feature map 
(L x K x C) FC layers 

expect a fixed 
size 

(H x W x C)

Zoom in

We put a H x W 
grid on top

Pooling

Feature map 
(H x W x C)



Fast R-CNN: RoI Pooling

• RoI Pooling: how do you do backpropagation?
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Boxes
(1000 x 4)

Lecture 8 - 12
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Class scores
1000

Feature map 
(L x K x C) FC layers 

expect a fixed 
size 

(H x W x C)

Zoom in

We put a H x W 
grid on top

Pooling

Feature map 
(H x W x C)

Like max-pooling!



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

• VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x
Faster!
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

• VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Faster!

FASTER!
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

• VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

• VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!
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The test times
do not include 
proposal 
generation!



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

• VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 50 seconds 2 seconds

(Speedup) 1x 25x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!
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With proposals 
included



Faster R-CNN:

• Solution: Have the proposal
generation integrated with the
rest of the pipeline

• Region Proposal  Network 
(RPN) trained to produce 
region  proposals directly.

• After RPN, everything is like 
Fast R-CNN

Lecture 8 - 80
Ren et al, “Faster R-CNN: Towards Real-Time Object  Detection with Region Proposal Networks”, NIPS 2015

Slide credit: Ross Girschick 92CV3DST | Prof. Leal-Taixé



Next lectures

• How does a Region Proposal Network work?
• One-stage detectors

• Next lecture is on November 29th!

• Details of the exercise will follow soon.
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