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Different challenges
• Multiple objects of the same type
• Heavy occlusions
• Appearance is often very similar
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Tracking-by-detection
• We will focus on algorithms where a set of detections is 

provided
– Remember detections are not prefect!

Find detections that match and form a trajectory

CV3DST | Prof. Leal-Taixé 3



Online vs offline tracking
• Online tracking 

– Often processes two frames at a time
– For real-time applications
– Prone to drifting à hard to recover from errors or occlusions

• Offline tracking
– Processes a batch of frames
– Good to recover from occlusions (short ones as we will see)
– Not suitable for real-time applications
– Suitable for video analysis
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Frame-by-frame

• 1. Track initialization (e.g. using a detector)

t t+1 t+2
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Frame-by-frame

• 1. Track initialization (e.g. using a detector)

• 2. Matching detections at t with detections at t+1

t t+1 t+2
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Frame-by-frame

• 1. Track initialization (e.g. using a detector)

• 2. Matching detections at t with detections at t+1

• Repeat for every pair of frames

t t+1 t+2
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Frame-by-frame
• 3. Matching tracks at t 

with detections at t+1
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Frame-by-frame
• Bipartite matching

– Define distances 
between boxes
(e.g., IoU, pixel distance, 
3D distance)
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Frame-by-frame
• Bipartite matching

– Define distances 
between boxes
(e.g., IoU, pixel distance, 
3D distance)

- Solve the unique 
matching with e.g., the 
Hungarian algorithm*
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*Demo: http://www.hungarianalgorithm.com/solve.php
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Frame-by-frame
• Bipartite matching

– Define distances 
between boxes
(e.g., IoU, pixel distance, 
3D distance)

- Solve the unique 
matching with e.g., the 
Hungarian algorithm*

- Solutions are the unique 
assignments that 
minimize the total cost
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Frame-by-frame
• Problems with frame-by-frame tracking

– Cannot recover from errors. If a detection is missing from 
a frame, we have to end the trajectory.

– All decisions are essentially local
– Hard to recover from errors in the detection step

• Solution: find the minimum cost solution for ALL 
frames and ALL trajectories
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Graph-based MOT
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Tracking with network flows

Graphical model

Node
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Tracking with network flows

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.“ ICCVW2011
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Tracking with network flows
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Tracking with network flows
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Tracking with network flows
• Node = detection

• Edge = flow = trajectory

• 1 unit of flow = 1 pedestrian
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Tracking with network flows
• Solving the Minimum Cost Flow Problem

“Determine the minimum cost of shipment of a commodity 
through a network”
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Tracking with network flows
• Solving the Minimum Cost Flow Problem

“Determine the minimum cost of shipment of a commodity 
through a network”
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Tracking with network flows
• Objective function
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Tracking with network flows
• Objective function

CV3DST | Prof. Leal-Taixé 22



Tracking with network flows
• Objective function

Indicator {0,1}

Costs – what will 
drive the tracking

C

C
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Optimal set of 
trajectories



Tracking with network flows

FLOW = TRAJECTORY = PEDESTRIAN

t-2 t-1 t t+1 t+2

Transition: cost     distance between detections
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Tracking with network flows

FLOW = TRAJECTORY = PEDESTRIAN

t-2 t-1 t t+1 t+2

S T

Entrance/exit: cost to start or end a trajectory

Transition: cost     distance between detections
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Tracking with network flows
t-2 t-1 t t+1 t+2

S T

Entrance/exit: cost to start or end a trajectory

Transition: cost     distance between detections
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Flow can only start at 
the source node and 
end at the sink node

Source Sink



Tracking with network flows
t-2 t-1 t t+1 t+2

S T

Entrance/exit: cost to start or end a trajectory

Transition: cost     distance between detections
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What happens if all costs are positive? 

Source Sink



Tracking with network flows
t-2 t-1 t t+1 t+2

S T

Entrance/exit: cost to start or end a trajectory

Transition: cost     distance between detections
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What happens if all costs are positive? 

Source Sink

Trivial solution: zero flow!



Detection edge
Probability that 
detection i is a 
false alarm

Zhang et al. “Global Data Association for Multi-Object Tracking Using Network Flows“. CVPR 2008

Tracking with network flows
• We need a negative cost

u v
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Complete graph
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Complete graph
S
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Source

t-1 t t+1

Connections that 
allow us to start a 
trajectory



Complete graph

T
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Sink

t-1 t t+1

Connections that 
allow us to end a 
trajectory



Linear Program 
MOT formulation
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Why a linear program?

• Fast solvers (e.g., Simplex algorithm)

• Guaranteed to converge to the global optimum
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Minimum cost flow problem
• Objective function
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Flow conservation at the nodes

Constraints
• Objective function

• Subject to
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Edge capacities

Constraints
• Objective function

• Subject to

NP-hard!!
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Flow conservation at the nodes



LP relaxation
• Objective function

• Subject to
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Flow conservation at the nodes

Edge capacities LP-relaxation
� 10 � � 10 � � 10 �



Solver
• Objective function
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Given the shape of the constraints (total 
unimodularity), we solve the relaxed problem and 

still get integer solutions. 



Objective function
• Objective function

• Equivalent to Maximum a-posteriori tracking 
formulation

C(i) = � log P(i)
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Two ways forward
• 1. Improving the costs (aka more learning)

– L. Leal-Taixé et al. “Learning an image-based motion context for multiple 
people tracking”. CVPR 2014.

– L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and
grouping behavior on a linear programming multiple people tracker“. 
ICCVW 2011

– L. Leal-Taixé et al. “Learning by tracking: Siamese CNN for robust target 
association”. CVPRW 2016.

– S. Schulter et al. „Deep network flow for multi-object tracking“. CVPR 2017.
– J. Son at al. „Multi-object tracking with quadruplet convolutional neural

networks“. CVPR 2017.
– Ristani and Tomasi. “Features for multi-target multi-camera tracking and 

re-identification”. CVPR 2018
– J. Xu et al. „Spatial-temporal relation networks for multi-object tracking“. 

ICCV 2019.
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Two ways forward
• 2. Making the graph more complex (including more 

connections)
– M. Keuper et al. „Motion segmentation and multiple object tracking by

correlation co-clustering“. PAMI 2018.
– S. Tang et al. „Subgraph decomposition for multi-target tracking:. CVPR 

2015.
– S. Tang et al. „Multiple people tracking by lifted multicut and person

reidentification“. CVPR 2017
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End-to-end learning?
• Can we learn:

– Features for multi-object tracking (e.g., costs)
– To do data association, i.e., find a solution on the graph

• We will exploit the graph structure we have just seen 
and perform end-to-end learning
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Message Passing 
Networks
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General Idea

Graph with optional node and edge feature vectors
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Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

Graph with optional node 
and edge feature vectors

https://tkipf.github.io/graph-convolutional-networks/


General Idea

Graph with optional node and edge feature vectors
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Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Graph with optional node 
and edge feature vectors

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

https://tkipf.github.io/graph-convolutional-networks/


Learning to propagate information
• We can divide the propagation process in two steps: 

‘node to edge’ and ‘edge to node’ updates.
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Initial Graph ‘Node to edge’ Update ‘Edge to Node’ Update 

Node embeddings
Edge embeddings

Repeat these two updates for a fixed number of 
iterations (message passing steps) in order to 

encode context into embeddings



‘Node to edge’ updates
• Notation: 

– Graph: 
– Initial embeddings:
– Embeddings after    steps: 
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Embedding of 
node i

Embedding of edge that 
connects nodes I and j



‘Node to edge’ updates
• Notation: 

– Graph: 
– Initial embeddings:
– Embeddings after    steps: 

• At every message passing step    , first do:
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Embedding of node i in 
the precious message 

passing step

Embedding of node j in 
the precious message 

passing step

Embedding of edge (i,j) 
i in the precious 

message passing step



‘Node to edge’ updates
• Notation: 

– Graph: 
– Initial embeddings:
– Embeddings after    steps: 

• At every message passing step    , first do:
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‘Node to edge’ updates
• Notation: 

– Graph: 
– Initial embeddings:
– Embeddings after    steps: 

• At every message passing step    , first do:
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Combine node and edge embeddings

Learnable function (e.g.
MLP) wtih shared weights 

across the entire graph



‘Edge to node’ updates
• After a round of edge updates, each edge 

embedding contains information about its pair of 
incident nodes
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‘Edge to node’ updates
• After a round of edge updates, each edge 

embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:
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Learnable function (e.g. MLP) with 
shared weights across the entire graph

message

message
message



‘Edge to node’ updates
• After a round of edge updates, each edge 

embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:
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Permutation invariant operation 
(e.g. sum, mean, max) Neighbors of node i

The aggregation 
provides each node 

embedding with 
contextual information 

about its neighbors



Remarks
• Main goal: obtaining node and edge embeddings that 

contain context information encoding graph topology and 
neighbor’s feature information.

• After repeating the node and edge updates for l steps, 
each node (resp. edge) embedding contains information 
about all nodes (resp. edge) at distance l (resp. l – 1) à
Think of iterations as layers in a CNN

• Observe that all operations used are differentiable, hence, 
MPNs can be used within end-to-end pipelines

• There is vast literature on different instantiations, as well 
as variations of the MPN framework we presented. See 
Battaglia et al. for an extensive review.
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MOT with Message 
Passing Networks
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Overview
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Overview
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Encode appearance and scene geometry 
cues into node and edge embeddings

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, arXiv 2019



Overview
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Propagate cues across the entire graph with 
neural message passing

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, arXiv 2019



Overview
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Learn to directly predict solutions of 
the Min-Cost Flow problem by 
classifying edge embeddings

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, arXiv 2019



Overview
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Feature Extraction Learnable Data Association

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, arXiv 2019

End-to-end learning



Feature encoding
• Appearance and geometry encodings
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CNN CNNMLP

Node embeddings
Edge embeddings

Appearance Appearance

Geometry

Node Node
Edge



Feature encoding
• Appearance and geometry encodings
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CNN CNNMLP

Relative Box 
Position

Relative Box 
Size

Time 
Difference

Node embeddings
Edge embeddings

Appearance Appearance

Geometry

Node Node
Edge



Feature encoding
• Appearance and geometry encodings
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CNN CNNMLP

Node embeddings
Edge embeddings

Appearance Appearance

Node Node
Edge

Shared weights for 
all nodes and edges

Geometry



Feature encoding
• Instead of defining pairwise costs for edges and 

unary costs for nodes (classical setting), feature 
vectors encoding appearance and geometry cues 
are used

• Goal: propagate these embeddings across the entire 
graph in order to obtain new embeddings encoding 
high-order information among detections
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Time-aware Message Passing
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Aggregation of nodes  is separated 
between past / future frames

All node embeddings 
are aggregated at once

An additional 
network combines 

both sources of 
aggregated features



Classifying edges
• After several iterations of message passing, each 

edge embedding contains high-order information 
about other detections

• We feed the embeddings to an MLP that predicts 
whether an edge is active/inactive
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Binary cross-entropy
Weight to 

balance active / 
inactive edges

Sum over the last 
steps

Edge predictions (w. sigmoid) at iteration l



Some results
• In practice, around 99% of constraints are 

automatically satisfied, and rounding takes negligible 
time

• The overall method is fast (~12 fps) and achieves SOTA 
in the MOT Challenge by a significant margin
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MOT evaluation
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Evaluation metrics
• Compute a set of measures per frame

– Perform matching between predictions and ground truth 
(we will use exactly the same Hungarian algorithm)

– FP = False positives
– FN = False negatives (missing detections)
– IDsw: identity switches
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Evaluation metrics
• How do we compute ID switches?

(a) An ID switch is counted because the ground truth track is assigned first to red, 
then to blue.
(b) You count both an ID switch (red and blue both assigned to the same ground 
truth), but also a fragmentation (Frag) because the ground truth coverage was cut.
(c) Identity is preserved. If two trajectories overlap with a ground truth trajectory 
(within a threshold), the one that forces least ID switches is chosen (the red one).
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Evaluation metrics
• Compute a set of measures per frame

– Perform matching between predictions and ground truth 
(we will use exactly the same Hungarian algorithm)

– FP = False positives
– FN = False negatives (missing detections)
– IDsw: identity switches
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Multi-object 
tracking accuracy

Ground truth



Datasets
• MOTChallenge: www.motchallenge.net (people)

– Several challenges from less to more crowded

• KITTI benchmark: http://www.cvlibs.net/datasets/kitti/ (vehicles)
• UA-Detrac: http://detrac-db.rit.albany.edu (vehicles)
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