Lecture 1 recap
Task definition

- Object detection problem

Bounding box. \((x, y, w, h)\)
Task definition

• Object detection problem

Bounding box. \((x,y,w,h)\)

+ class
Traditional object detection methods

1. Template matching + sliding window
Traditional object detection methods

• 1. Template matching + sliding window
Traditional object detection methods

- 1. Template matching + sliding window

For every position you evaluate how much do the pixels in the image and template correlate
Traditional object detection methods

1. Template matching + sliding window

For every position you evaluate how much do the pixels in the image and template correlate.
Traditional object detection methods

- Problems of 1. Template matching + sliding window

For every position you evaluate how much do the pixels in the image and template correlate.
Viola-Jones detector

2. Feature extraction + classification
 – Learning multiple weak learners to build a strong classifier
 – That is, make many small decisions and combine them for a stronger final decision

Viola-Jones detector

- Feature extraction + classification

Haar features
Histogram of Oriented Gradients

2. Feature extraction + classification

Features = histogram of oriented gradients
Classifier = Support Vector Machine (SVM)

Deformable Part Model

• Also based on HOG features, but based on body part detection → more robust to different body poses

Two-stage object detectors
Types of object detectors

- **One-stage detectors**
 - Image → Feature extraction → Classification → Localization
 - Class score (cat, dog, person)
 - Bounding box (x, y, w, h)

- **Two-stage detectors**
 - Image → Feature extraction → Extraction of object proposals → Classification → Localization
 - Class score (cat, dog, person)
 - Refine bounding box (Δx, Δy, Δw, Δh)
Types of object detectors

- **One-stage detectors**
 - Image
 - Feature extraction
 - Classification
 - Localization
 - Class score (cat, dog, person)
 - Bounding box (x,y,w,h)

- **Two-stage detectors**
 - Image
 - Feature extraction
 - Extraction of object proposals
 - Classification
 - Localization
 - Refine bounding box ($\Delta x, \Delta y, \Delta w, \Delta h$)
Localization

• Bounding box regression

Image → Feature extraction (this time with a Neural Network) → Output: Box coordinates \((x,y,w,h)\)

Ground truth: Box coordinates

L2 loss function
Localization

- Bounding box regression

Image → Convolutional Neural Network

Output: Box coordinates (x, y, w, h)

Ground truth: Box coordinates

L2 loss function
Localization and classification

- Bounding box regression

Image → Convolutional Neural Network → Fully connected

Output: Box coordinates (x, y, w, h)
Localization and classification

- Bounding box regression

![Diagram showing image processing steps: Image -> Convolutional Neural Network -> Fully connected layers -> Output: Box coordinates (x,y,w,h) -> L2 loss]

Output: Class scores

L2 loss

Softmax loss
Localization and classification

- Bounding box regression

Image → Convolutional Neural Network

Output: Box coordinates \((x,y,w,h)\)

Regression head

Classification head

Output: Class scores
Localization and classification

• It was typical to train the classification head first, freeze the layers
• Then train the regression head
• At test time, we use both!

Overfeat

- Sliding window + box regression + classification

Image (221 x 221 x 3) → Convolutional Neural Network → Feature map (5 x 5 x 1024) → Boxes (1000 x 4) → Class scores 1000

• Sliding window + box regression + classification

Image (468 x 356 x 3)

Overfeat

- Sliding window + box regression + classification

Image (468 x 356 x 3)

Overfeat

• Sliding window + box regression + classification

Image (468 x 356 x 3)

Overfeat

- Sliding window + box regression + classification

Image (468 x 356 x 3)

We end up with many predictions and we have to combine them for a final detection (in Overfeat they have a greedy method).
Overfeat

• Sliding window + box regression + classification

We end up with many predictions and we have to combine them for a final detection (in Overfeat they have a greedy method)

Image (468 x 356 x 3)

Non-Maximum Suppression (NMS)

Algorithm 1 Non-Max Suppression

1: procedure NMS(B, c)
2: $B_{nms} \leftarrow \emptyset$
3: for $b_i \in B$ do
4: discard \leftarrow False
5: for $b_j \in B$ do
6: if same(b_i, b_j) $> \lambda_{nms}$ then
7: if score(c, b_j) $> \text{score}(c, b_i)$ then
8: discard \leftarrow True
9: if not discard then
10: $B_{nms} \leftarrow B_{nms} \cup b_i$
11: return B_{nms}

Overlap = to be defined
Score = depends on the task

Start with anchor box i
For another box j
If they overlap
Discard box i if the score is lower than the score of j
We measure region overlap with the **Intersection over Union (IoU)** or **Jaccard Index**:

\[
J(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]
Non-Maximum Suppression (NMS)

Algorithm 1 Non-Max Suppression

1: procedure NMS(B, c)
2: $B_{nms} \leftarrow \emptyset$
3: for $b_i \in B$ do
4: discard \leftarrow False
5: for $b_j \in B$ do
6: if same(b_i, b_j) $> \lambda_{nms}$ then
7: if score(c, b_j) $> score(c, b_i)$ then
8: discard \leftarrow True
9: if not discard then
10: $B_{nms} \leftarrow B_{nms} \cup b_i$
11: return B_{nms}

Overlap = to be defined
Score = depends on the task
Overfeat

• In practice: use many sliding window locations and multiple scales

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014
Overfeat

- Sliding window + box regression + classification

What prevents us from dealing with any image size?

What about multiple objects?

- Localization: ✅ Regression
- How about detection?
What about multiple objects?

- Localization: ✅ Regression
- How about detection?

3 objects means having an output of 12 numbers (3 x 4)
What about multiple objects?

- Localization: ✅ Regression
- How about detection?

14 objects means having an output of 56 numbers (14 x 4)
What about multiple objects?

• Localization: ✅ Regression
• How about detection?

• Having a variable sized output is not optimal for Neural Networks

• There are a couple of workarounds:
Detection as classification?

• Localization: ✅ Regression
• How about detection? ❌ Regression

Is this a Flamingo? NO
Detection as classification?

- Localization: ✅ Regression
- How about detection? ❌ Regression

Is this a Flamingo? NO
Detection as classification?

• Localization: ✅ Regression
• How about detection? ❌ Regression

Is this a Flamingo? YES!
Detection as classification?

• Localization: ✓ Regression
• How about detection? ✓ Classification

Problem:
– Expensive to try all possible positions, scales and aspect ratios
– How about trying only on a subset of boxes with most potential?
Region Proposals

• We have already seen a method that gives us “interesting” regions in an image that potentially contain an object

• Step 1: Obtain region proposals
• Step 2: Classify them.
The R-CNN family
R-CNN

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

R-CNN

Regression head to refine the bounding box location

Classification head

Extract features

Warping to a fix size 227 x 227

R-CNN

- Training scheme:
 - 1. Pre-train the CNN on ImageNet
 - 2. Finetune the CNN on the number of classes the detector is aiming to classify (softmax loss)
 - 3. Train a linear Support Vector Machine classifier to classify image regions. One SVM per class! (hinge loss)
 - 4. Train the bounding box regressor (L2 loss)
R-CNN

• **PROS:**

 – The pipeline of proposals, feature extraction and SVM classification is well-known and tested. Only features are changed (CNN instead of HOG).

 – CNN summarizes each proposal into a 4096 vector (much more compact representation compared to HOG)

 – Leverage transfer learning: the CNN can be pre-trained for image classification with C classes. One needs only to change the FC layers to deal with Z classes.
R-CNN

- **CONS:**
 - Slow! 47s/image with VGG16 backbone. One considers around 2000 proposals per image, they need to be warped and forwarded through the CNN.
 - Training is also slow and complex
 - The object proposal algorithm is fixed. Feature extraction and SVM classifier are trained separately → not exploiting learning to its full potential.

Let us try to solve this first
SPP-Net

How do we “pool” these features into a common size

Frozen

SPP-Net

• It solved the R-CNN problem of being slow at test time
• It still has some problems inherited from R-CNN:
 – Training is still slow (a bit faster than R-CNN)
 – Training scheme is still complex
 – Still no end-to-end training
Fast R-CNN
Fast R-CNN

Softmax classifier

Linear + softmax

Linear

Bounding-box regressors

Fully-connected layers

“Roi Pooling” (single-level SPP) layer

“conv5” feature map of image

Forward whole image through ConvNet

Regions of Interest (Rois) from a proposal method

Input image

CV3DST | Prof. Leal-Taixé

Shared computation at test time (like SPP)
Fast R-CNN

Region of Interest Pooling
Fast R-CNN: RoI Pooling

- Region of Interest Pooling

Image $(N \times M \times 3)$ → Convolutional Neural Network → Feature map $(L \times K \times C)$ → FC layers expect a fixed size $(H \times W \times C)$

Boxes (1000×4)

Class scores 1000
Fast R-CNN: RoI Pooling

- Region of Interest Pooling

Image \((N \times M \times 3)\) → Convolutional Neural Network → Feature map \((L \times K \times C)\) → We have to transform this feature map into size \((H \times W \times C)\)

Class scores 1000 → Boxes \((1000 \times 4)\)
FC layers expect a fixed size \((H \times W \times C)\)
Fast R-CNN: RoI Pooling

- Region of Interest Pooling

Feature map \((L \times K \times C)\)

Zoom in

Box scores (1000 x 4)

Class scores 1000

FC layers expect a fixed size \((H \times W \times C)\)
Fast R-CNN: RoI Pooling

- Region of Interest Pooling

Feature map $(L \times K \times C)$

Zoom in

We put a $H \times W$ grid on top

FC layers expect a fixed size $(H \times W \times C)$

Boxes (1000×4)

Class scores 1000
Fast R-CNN: RoI Pooling

• Region of Interest Pooling

Feature map
\((L \times K \times C)\)

Zoom in

Feature map
\((H \times W \times C)\)

Pooling

We put a \(H \times W\) grid on top

Boxes
\((1000 \times 4)\)

Class scores
1000

FC layers
expect a fixed size
\((H \times W \times C)\)
Fast R-CNN: RoI Pooling

- **RoI Pooling**: how do you do backpropagation?

 - Feature map $(L \times K \times C)$
 - We put a $H \times W$ grid on top
 - Like max-pooling!

 - Zoom in
 - Pooling
 - Feature map $(H \times W \times C)$

 - FC layers expect a fixed size $(H \times W \times C)$

 - Boxes (1000 x 4)
 - Class scores 1000
Fast R-CNN Results

- VGG-16 CNN on Pascal VOC 2007 dataset

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
</tbody>
</table>
Fast R-CNN Results

- VGG-16 CNN on Pascal VOC 2007 dataset

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
</tbody>
</table>
Fast R-CNN Results

- VGG-16 CNN on Pascal VOC 2007 dataset

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Faster!
FASTER!
Better!
Fast R-CNN Results

- VGG-16 CNN on Pascal VOC 2007 dataset

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image:</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>146x</td>
</tr>
<tr>
<td>mAP (VOC 2007):</td>
<td>66.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>

The test times do not include proposal generation!
Fast R-CNN Results

- VGG-16 CNN on Pascal VOC 2007 dataset

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>8.8x</td>
</tr>
<tr>
<td>Test time per image</td>
<td>50 seconds</td>
<td>2 seconds</td>
</tr>
<tr>
<td>(Speedup)</td>
<td>1x</td>
<td>25x</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Faster!
FASTER!
Better!
Faster R-CNN
Faster R-CNN:

- Solution: Have the proposal generation integrated with the rest of the pipeline.
- Region Proposal Network (RPN) trained to produce region proposals directly.
- After RPN, everything is like Fast R-CNN.

Region proposal network

• How to extract proposals

Image
(N x M x 3)

(H x W x 4096)

Zoom in

Extract proposals

• How many proposals?
 ✓ We need to decide a fixed number

• Where are they placed?
 ✓ Densely
Region proposal network

- We fix the number of proposals by using a set of $n=9$ anchors per location.
- 9 anchors = 3 scales and 3 aspect ratios

Region proposal network

- We fix the number of proposals by using a set of $n=9$ anchors per location.
- 9 anchors = 3 scales and 3 aspect ratios
- We extract a descriptor per location

Region proposal network

- How to extract proposals

Image
(N x M x 3)

(H x W x 4096)

3x3 conv

(H x W x 256)

#anchors per image?

(H x W x n)
Region proposal network

- How to extract proposals

- Image
 \((N \times M \times 3)\)

- \(3\times3\) conv
 \((H \times W \times 4096)\)

- Anchor regression to proposal box

- \(1\) classification score per proposal (object/non-object)
 \((H \times W \times 256)\)

- \(1\times1\) conv
 \((H \times W \times (2n+4n))\)

- \#anchors per image?
 \((H \times W \times n)\)
Region proposal network

• How to extract proposals

Image
(N x M x 3)

Per feature map location, I get a set of anchor correction and classification into object/non-object

1 classification score per proposal (object/non-object)

Anchor regression to proposal box

(RPN)

3x3 conv

(H x W x 4096)

1x1 conv

(H x W x 256)

(H x W x (2n+4n))
RPN: training and losses

• Classification ground truth: We compute p^* which indicates how much an anchor overlaps with the ground truth bounding boxes

\[
p^* = 1 \quad \text{if} \quad \text{IoU} > 0.7
\]
\[
p^* = 0 \quad \text{if} \quad \text{IoU} < 0.3
\]

• 1 indicates the anchor represents an object (foreground) and 0 indicates background object. The rest do not contribute to the training.
RPN: training and losses

- For an image, we randomly sample 256 anchors to form a mini-batch (balanced objects vs. non-objects).
- We calculate the classification loss (binary cross-entropy).
- Those anchors that do contain an object are used to compute the regression loss.
RPN: training and losses

- Each anchor is described by the center position, width and height \(x_a, y_a, w_a, h_a \)
RPN: training and losses

• Each anchor is described by the center position, width and height x_a, y_a, w_a, h_a

• What the network actually predicts are t_x, t_y, t_w, t_h

Normalized x \[t_x = (x - x_a)/w_a, \]

Normalized width \[t_w = \log(w/w_a), \]

Normalized y \[t_y = (y - y_a)/h_a, \]

Normalized height \[t_h = \log(h/h_a), \]

• Smooth L1 loss on regression targets
Faster R-CNN: Training

• First implementation, training of RPN separate from the rest.
• Now we can train jointly!

• Four losses:
 1. RPN classification (object/non-object)
 2. RPN regression (anchor -> proposal)
 3. Fast R-CNN classification (type of object)
 4. Fast R-CNN regression (proposal -> box)
Faster R-CNN

• 10x faster at test time wrt Fast R-CNN
• Trained end-to-end including feature extraction, region proposals, classifier and regressor
• More accurate, since proposals are learned. RPN is fully convolutional
Faster R-CNN: Results

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
<th>Faster R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test time per image</td>
<td>50 seconds</td>
<td>2 seconds</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>(with proposals)</td>
<td>1x</td>
<td>25x</td>
<td>250x</td>
</tr>
<tr>
<td>(Speedup)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
<td>66.9</td>
</tr>
</tbody>
</table>

CV3DST | Prof. Leal-Taixé
Two-stage object detectors
Related works