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3D Computer Vision:
Detection, Tracking
and Segmentation



Motivation
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1084: NavlLab Project

Toward Aufonomous Driving:

o SO far indoor robotics, [aboratory  me e e

rles Thorpe, Martial Hebert, Taukeo Kanade, and Steven Shafer
Carnegie Mellon University

Set“ A g S ( Leﬂ: S h a key th e ro bOt) DESIGNING AN OUTDOOR MOBILE ROBOT THAT FOLLOWS I

FLAT, STRAIGHT, WELL-ILLUMINATED, AND CLEARLY

o Na\/Lab prOJeCt takeg rObOJUC MARKED ROADS IS ONE THING. OPERATING SUCH A4

ROBOT IN A REALISTIC ENVIRONMENT WITH BAD
WEATHER, BAD LIGHTING, AND BAD OR CHANGING

perception outdoors! (right: s o
NavlLab 1)
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1086: NavlLab 1

e Navlab 1 3D vision!

e Stereo?” ERIM scanner => early LIDAR sensor!
o 50Kg,
o 40m range, 2 frames/sec

Toward Auionomous Driving:
The CMU Naviab

. ERIM

Part | — Perception

Charles Thorpe, Martial Hebert, Takeo Kanade, and Steven Shafer

Carnegie Mellon University Y . (?)
i e

Clearly, one color camera is not enough to EvE sare

collect 3D data. An alternative is to use
passive techniques for recovering 3D data,
such as stereo vision, but these techniques
have significant drawbacks, including high
computational demand, difficulty in rang-
ing bland surfaces, and reliance on ambi-
ent lighting. Instead, we use an active sen-

@
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1086: NavlLab 1

e 3D vISion

o Terrain mapping and vehicle localization 3D measurements from
, imaging laser radars:
o Road segmentation how good are they?

o Obstacle "detection’ 1992

Martial Hebert and Eric Krotkov

Figure 3. Erim intensity (top) and range images. The
scene contains a tree (visible to the left), and a person
(visible in the upper centre) on a path

CV3DST | Laura Leal-Taixe, Aljosa Osep



e (Crid + cell classification
o Estimate per-cell normal
o Deviates from "up’ vec?

e Cluster obstacle cells to obtain
regions (obstacles)

CV3DST | Laura Leal-Taixe, Aljosa Osep

—arly Obstacle Detection!

extured Obstacle

extured Obstacle

Shoulder
Shoulder
Smooth Patch

Updated Symbolic Surface Map

Fig. 19. The resultant description of 3-D terrain and obstacles from the
image in Fig. 18. The navigable area is shown as a mesh, and the two
trees are detected as ‘‘textured obstacles’’ and shown as black polygons.



1005 NavlLab 5

e [he first autonomous coast-to-
coast drivel
— 2,849 mi (Pittsburgh -> San

Diego), 2,797 mi autonomaous ~ -
(98,2%), avyg. 638 mph Figure 3. the Navlab5 testbed

» Detection + tracking using line T 1"
laser [Zhao&Thrope, CVPRQ8] o g
T
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DARPA 2005 Urban Challenge

e 142-mile long course, Mojave desert (10Nh)

o 2004 107 teams registered and 15 raced

m None navigates for more than 5% of the entire coursel
o 2005 105 teams registered and 23 raced.

m Five teams finished,

m \Winner: Stanford's robot "Stanley’,
mONh 53mMinN
m CMU team 2nd (NavlLab 11)

CV3DST | Laura Leal-Taixe, Aljosa Osep



DARPA 2005 Urban Challenge

e \/ehicle state estimation:
o GPS, IMU, wheel encoders
o Extended Kalman filter

e 3D Vision: lidar-based terrain segmentation and

mapping: detect non-drivable terrain ahead!

CV3DST | Laura Leal-Taixe, Aljosa Osep
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DARPA 2005 Urban Challenge

“While the DARPA Grand Challenge was a milestone in the quest for self-driving cars, it left open a
number of important problems. Most important among those was the fact that the race
environment was static. Stanley is unable to navigate in traffic. For autonomous cars to succeed,
robots, such as Stanley, must be able to perceive and interact with moving traffic. While a number
of systems have shown impressive results [..], further research is needed to achieve the level of
reliability necessary for this demanding task.

Thrun et al, Stanley: The Robot That Won the DARPA Grand Challenge. The 2005 DARPA Grand
Challenge. Springer Tracts in Advanced Robotics'o7
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DARPA 2007 Urban Challenge

e OO MI urban area course, b n
o Obey traffic laws
e CMU team 1st, Stanford 2nd

(a) test conditions on course A at the UGC (b) Junior at intersection on course A

CV3DST | Laura Leal-Taixe, Aljosa Osep
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3D Mobile Perception Landscape

e 2005
e 2007/

static wor
600 M1 urban area course, 6 n

o Competing robots + human professional drivers
o Early object detection and tracking!

RSS'04

Model Based Vehicle Tracking for Autonomous
Driving in Urban Environments

Anna Petrovskaya and Sebastian Thrun
Computer Science Department
Stanford University
Stanford, California 94305, USA
{ anya, thrun }@es.stanford.edu

Abstract—Situational awareness is crucial for autonomous
driving in urban environments. This paper describes moving
Vehicle tracking module that we developed for our autonomous
driving robot Junior The robot won secoud place i the Urban
Grand Challenge, an autonomous driving race organized by th

. Government in 2007. The tracking module provides relable
tn:king of moving vehicles from a high-speed moving platform
using laser range finders. Our approach models both dynamic
and geometric properties of the tracked vehicles and estimates
them using a single Bayes filter per vehicle, We also show how to
build efficient 2D representations out of 3D range data and how
to detect poorly visible black vehicles. Experimental validation
includes the most challenging conditions presented at the UGC
as well as other urban settings.

1. INTRODUCTION

Autonomously driving ars have been a longlasting dream
of robotics cars
promise to bring a number of benefits to society, including
prevention of road accidents, optimal fuel usage, comfort and

Applani NS

Fig. 1. Junior, our entry in the DARPA Urban Challenge. Junior is
equlp%ed with ﬁvc diffrent laser measurement sysems, u mltr-radar
al inertial navigation system, as shown in

this Bae.

to which we will also refer as the cgo-vehicle (Fig. 1). In

ICRAM

Towards 3D Object Recognition
via Classification of Arbitrary Object Tracks

Alex Teichman, Jesse Levinson, Sebastian Thrun
Stanford Artificial Tntelligence Laboratory
{teichman, jessel, thrun} @cs.stanford.edu

Abstract—Object recognition is a critical next step for
autonomous robots, but a solution to the problem has remained
clusive. Prior 3D-sensor-based work largely classifies individual
point cloud segments or uscs class-specific trackers. In this
paper, we take the approach of classifying the tracks of all
valble objeci: O iew {£3ck clamlBcation selhid, hased o

ematically principled method of combining log odds
estimators, is fast enough for real time use, is non-specific to
object class, and performs well (98.5% accuracy) on the task
of lssfying correctly.tracked, wellsegmented abjects o car,
pedestrian, bicyclist, and background classcs

We evaluate the dlassifier’s performance using the Stanford
‘Track Collection, a new dataset of about 1.3 million
point clouds in about 14000 tracks recorded from a

make publicly available, contains tracks extracted from about
one hour of 360-degree, 10Hz depth information recorded both
while driving on busy campus strects and parked at busy

L INTRODUCTION

Object recognition in dynamic environments is one of
the primary unsolved challenges facing the robotics commu-

Example scan of two other cars and a bicyclist at an
intersection. Points are colored by return intensity.

None of the algorithms described here are specifically

CV3DST | Laura Leal-Taixe, Aljosa Osep



3D Object Recognition via
Classification of Object Tracks

-

Teichman et al, ICRA11: E

e 'Object recognition is a critical next step
for autonomous robots’

I

e A solution would include segmentation, tracking and
classification components, and would allow for the
addition of new object classes without the need for an
expert to specify new models’

CV3DST | Laura Leal-Taixe, Aljosa Osep
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3D Object Recognition via
Classification of Object Tracks

e Data: Stanford Track Collection
o Bottom-up point cloud segmentation
o Tracking (Kalman filter)
o Label tracks!

Sct [WPcdcstrian | Bicyclist | Background All
Training 205 187 6585 7881
Testing 112 140 4936 6035
Total 317 327 11521 13916

| Car [WPedestrian | Bicyclist | Background All

32281 31165 532760 | 688461

22203 25410 530917 | 637703

Total | 151428 | 54484 56575 1063677 | 1326164




3D Object
Classification

Recognition via

of Object Tracks

e [xtract features + classify

e Results:

= 4 3 ¥

BACK IN MY DAYS

Car Pedestrian ~ Bicyclist

ﬁ Naive DBF
—y Segment classifier only | 98.3% 99.5% 99.8% 97.6%

Holistic classifier only 94.3% 99.2% 99.2% 93.0%

Fig. 7: Examples of side, top, and front views of objects Prior only

99.8% 99.9%

86.0% 98.1% 97.7% 81.8%

using virtual orthographic camera intensity images. Pixel
intensities reflect the average LIDAR return intensity. Several
HOG descriptors are computed on each view. Alignment into
a canonical orientation enables seeing consistent views of
objects.

CV3DST | Laura Leal-Taixe, Aljosa Osep

3" WE DIDNT
\UHAVE CONUNETS

16



3D Object
Classificatior

Recognition via

of Object Tracks

[ - Y - —_— wlll T i , ‘ g : y 4 = y
i @‘-(l &',I \V_" ia U D/ /,, g}ﬂ e E d‘} :§—> ;n v]‘ o W S
ﬁ.\ — l ‘ 7:, ‘,"9 .A - :x//
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Tracking-Before-Detection

« /.

nue %

== Powered by Diesel.

Teichman et al,, Tracking-Based Semi-Supervised Learning, RSS'11

CV3DST | Laura Leal-Taixe, Aljosa Osep 18



Segmentation is Difficult!

e [nteracting objects, crowded scenes
e Sensor resolution decreasing with distance from the
sensor, "holes’ due to reflective and low-albedo

S U rfa CeS Undersggntation ~ Correct

Figure from Held et al, A Probabilistic Framework for Real-time 3D Segmentation using Spatial, Temporal, and Semantic Cues, RSS'16

CV3DST | Laura Leal-Taixe, Aljosa Osep 19



D Computer Vision In the
Era of Deep Learning

Learmning Representations from 3D Data




Challenges

« Depth sensor characteristics

- Limited scan range

- Non-cooperative materials

— Sparse and unstructured signal
« Mobile platform

« QObject localization in 3D

Source: Qi etal, C\/PF%’

CV3DST | Laura Leal-Taixe, Aljosa Osep

Source: Yuan et al,, 3DV'19




Deep Learning on Point Clouds

e Signal representation?

Volumetric

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Voxel Grids + 3D Convolutions?

VoxNet: A 3D Convolutional Neural Network for Real-Time Object

Recognition

Daniel Maturana and Sebastian Scherer

Abstract— Robust object recognition is a crucial
robots operating autonomously in real world enviro
Range sensors such as LiDAR and RGBD cameras ar
creasingly found in modern robotic systems, providing a ri
source of 3D information that can aid in this task. Howeve
many current systems do not fully utilize this information an
have trouble efficiently dealing with large amounts of poi
cloud data. In this paper, we propose VoxNet, an architectur
to tackle this problem by integrating a volumetric Occupanc
Grid representation with a supervised 3D Convolutional Neur
Network (3D CNN). We evaluate our approach on publicly

Maturana et al., IROS’15
Y’all just compute occupancy
maps, learn representations
using 3D convs and classify!

available benchmarks using LiDAR, RGBD, and CAD data.
VoxNet achieves accuracy beyond the state of the art while
labeling hundreds of instances per second.

CV3DST | Laura Leal-Taixe, Aljosa Osep



Voxel Grids + 3D Convolutions?

Occupancy Grid

32x32x32

T
Conv(32,5,2)
14x14x14
Conv(32,3, 1)+Poo|(2)
sxsxs @

Pedestrian FU”(K)/OUtpUt Toilet

CV3DST | Laura Leal-Taixe, Aljosa Osep

Occupancy
Grid 1» 4

e
09 s
gL

Fig. 3. Cross sections of three 5 X 5 X 5 filters from the first layer of
VoxNet in the Sydney Objects Database, with corresponding feature map on
the right.

24



Deep Learning on Point Clouds

e Signal representation?

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep
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https://web.stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf

Deep Learning on Unordered Sets

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas
Stanford University

Abstract Qi et al., CVPR’17:

o~ " ] .
—
-) Point cloud is an important type of Y all Should JuSt take raw pO]-nt
e\ structure. Due to its irregular format, mos ( )
o transform such data to regular 3D voxel grids Clouds ) use a Shared MLP tO
O,  of images. This, however, renders data . .
<C voluminous and causes issues. In this paper, enCOde p01nts to K—dlm and max-
— novel type of neural network that directly co ]
: clouds, which well respects the permutation pOOI.
points in the input. Our network, named P
> Wd_es @ "mf{ed a.rchnecture Jor app l.lcatmns ranging fi rm.n voxelization or rendering. It is a unified architecture that learns
(ij(’(:‘f C[(ISSlﬁC(lll()": part Seg{ﬂel”(l”‘()n, 'f() scene S'emantlc both global and local pOint features, providing a simple. efficient
Q parsing. Though simple, PointNet is highly efficient and and effective approach for a number of 3D recognition tasks.

. Serﬁinat ocaper by Qi et al, CVPR'1y
« Game-changer

N
()

CV3DST | Laura Leal-Taixe, Aljosa Osep



Deep Learning on Point Clouds

e End-to-end learning for unordered point data

Object Classification

PointNet Object Part Segmentation

Semantic Scene Parsing

e Challenges
o Unordered: need repr. invariant to NI permutations!

o Invariance under geometric transformations:
m Rotation/translation should not alter classification results!

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Permutation Invariance
— —

fx.%y,..0x,)= f(x, %, .....%, ), x€R”

represents the same setas N

v v

Examples:

f(x,%,,...,x,)=max{x,,x,,...,x, }

(X,%, 000X, ) =X, + X, +...+ X
1.97%2 n 1 2 n

e How can we construct a family of symmetric
functions by neural networks?

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep 28
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Vanilla PointNet

e Observe
f(x,xy,...,x,) =70

g(h(x,),...,h(x,))

is symmetric if & is symmetric

e PointNet: MLP + max pooling

h
(1,2,3) +> wmp
(1,1,1) L e & ¥
(2.3.2) i —h- mp —+I
(2,3,4) +— mp PointNet (vanilla)

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep



https://web.stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf

INnvariance to Transformations

3 T-Net | transform 3
params
N {Transform ]‘> N

Transformed
Data

Data

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Network Architecture

Classification Network

input mlp (64,64) feature
2 transform transform
S | e ok

;‘ o — shared E ]

£

CV3DST | Laura Leal-Taixe, Aljosa Osep

2

1



Kernel Point Convolution: KPConv

KPConv: Flexible and Deformable Convolution for Point Clouds

Hugues Thomas! Charles R. Qi?  Jean-Emmanuel Deschaud®  Beatriz Marcotegui®

Frangois Goulette!

Leonidas J. Guibas?3

!Mines ParisTech  2Facebook AI Research  3Stanford University

Abstract

We present Kernel Point Convolution' (KPConv), a new
design of point convolution, i.e. that operates on point
clouds without any intermediate representation. The convo-
lution weights of KPConv are located in Euclidean space by
kernel points, and applied to the input points close to them.
Its capacity to use any number of kernel points gives KP-
Conv more flexibility than fixed grid convolutions. Further-
more, these locations are continuous in space and can be
learned by the network. Therefore, KPConv can be extended
to deformable convolutions that learn to adapt kernel points
to local geometry. Thanks to a regular subsampling strat-
egy, KPConv is also efficient and robust to varying densities.
Whether they use deformable KPConv for complex tasks, or
rigid KPconv for simpler tasks, our networks outperform
state-of-the-art classification and segmentation approaches

CV3DST | Laura Leal-Taixe, Aljosa Osep

are coupled with corresponding features like colors. In this
work, we will always consider a point cloud as those two el-
ements: the points P € RY*3 and the features F € RV*PD,
Such a point cloud is a sparse structure that has the property
to be unordered, which makes it very different from a grid.
However, it shares a common property with a grid which
is essential to the definition of convolutions: it is spatially
localized. In a grid, the features are localized by their in-
dex in a matrix, while in a point cloud, they are localized by
their corresponding point coordinates. Thus, the points are
to be considered as structural elements, and the features as
the real data.

Various approaches have been proposed to handle such
data, and can be grouped into different categories that we
will develop in the related work section. Several meth-
ods fall into the grid-based category, whose principle is to
project the sparse 3D data on a regular structure where a



Kernel Point Convolution: KPConv

e Kernel Point Convolution
o Convolve input points with KPConv (radius-nibhd)
o KPConv: kernel points + (learnable) weights

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Network Architecture

Points )

Features

Classes
KPConv

Strided KPConv
Fully connected

Chasses,

N eaXaxes,

Near. Ups. + Concal.
1Conv
Skip link

N SwvaNs

NV Swas

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Deep Learning on Point Clouds

e Signal representation?

Slides adapted from Charles Qi CVPR presentation slides (https://web.stanford.edu/~rqgi/pointnet/docs/cvpr17 pointnet slides.pdf)

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Sparse 3D Convolutions

VoxelNet: point cloud -> occupancy map -> 3D conv

® [ros
o Convolutional networks are effective and well-
consolidated! Left: lidar; Right: RGB-D
e Cons ¥
o Expensivel
o Observe:
m 3D spaceis ‘mostly empty’
m Lidar sparsel
e (Can we get best of both worlds?

CV3DST | Laura Leal-Taixe, Aljosa Osep 38



Signal Representation

e Regular image signals: dense matrices, tensors
o Conv. op. dense matrix multiplication

e Sparse signals: data list + index list

5x5 Image with three Active sites
channels, 5x5x3 tensor /

/ Sparse form:

e Datalistis(o.1, 0.1, 0.11, [0.2, 0.2, 0.2]]
e Indexlistis 11,21, 12, 3711
e YXorder

aaaaa

e Conv. op. that leverages such a sparse representation
to save computation?

CV3DST | Laura Leal-Taixe, Aljosa Osep Figure credits: Zhiliang Zhou



First Try: Sparse Convolutions

Conv. kernel. Qutput (data/index list).

FO F1 F2
nﬂ * F2 F4 F5
F6 F7 F8

|
Figure credits: Zhiliang Zhou

e Sparse convolutions: as 2D, but skip ‘empty space’!
o Issue: submanifold dilation:

M. Engelcke et al,, Vote3Deep: Fast Object Detection in 3D

Point Clouds using Efficient Convolutional Neural Networks.
::l ICRA17.

B. Graham. Sparse 3D Convolutional Neural Networks.

BMVC'15.

CV3DST | Laura Leal-Taixe, Aljosa Osep 40




Submanifold Convolutions!

Conv. kernel: Qutput (data/index list).

|
Figure credits: Zhiliang Zhou

e Submanifold convolutions: Do not increase active
sites!

e Output kernel must cover input site!
o Maintains sparsity!

Graham et al, 3d semantic segmentation with submanifold sparse convolutional networks.

CV3DST | Laura Leal-Taixe, Aljosa Osep ~ CVPR18 41



Network Architecture

o SSCN networks: FCN, U-Net
o Combo of SSC and strided SC layers

I I I I I inPUt
conv

| qIILII I !
I— lﬁ

(a) Submanifold sparse FCN. (b) Submanifold sparse U-Net.

Applied to "active’ voxels

Graham et al, 3d semantic segmentation with submanifold sparse convolutional networks.

CVPR'18

CV3DST | Laura Leal-Taixe, Aljosa Osep 42



D Computer Vision In the

Era of Deep Learning
Object Detection and Tracking




KIT T Geiger et al, cvPR12)

e 04 beam lidar, 10 Hz
e Karlsruhe, Germany
® 2 Classes

Datasets

NUSCENES [Caesar et al, CVPR?20]

e 132 beam lidar, 2 Hz
e Boston, MA; Singapore
e 7/ classes

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Object Detection

e [\Wwo-stage detector (Faster

- Point RCNN

R-CNND

e Stage-l proposal generation

Point cloud representation Point-wise Generate 3D proposal
of input scene feature vector from each foreground point
_— R E—— r !__‘,.- oY
i = . Bin-based 3D =
o - C—J| "| Box Generation 4
« 3 =
i 13s8)[3e| =
: —(CE|I28
£ c [
ouw |ls a f
- - Foreground Point
"| Segmentation
= |
| e =, Z.

Shi et al, PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR'19

CV3DST | Laura Leal-Taixe, Aljosa Osep
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Object Detection: Point RCNN

o Stage-ll

Point cloud representation Point-wise Generate 3D proposal
of input scene feature vector from each foreground point

Point Cloud
Encoder
Decoder

Point Cloud

-y X
Point’Coords. - Fealues — — =— = - -
Seﬂa&cb _ _ — —FoeqoundMask. —5npgs . —— .
e T e ———— = b: Canonical 3D Box Refinement
o= e i
Fe=== = — - - - N 3D boxes of detected objects
| | Semantic Features Merged Features i % §
> —] ﬂ Bin-based 3D §
wee aen é
: | @@ 4 y j o Box Refinement
| | 4 E o
| | 0§
| ' S @0
| - . » 4| E .
| ' o | |Local Spatial Points Canonical %‘::g;‘:i’;‘;e (-
N —— l_.’ —» M
:Point Cloud Region PoolingJI ‘@ & & ) [ranstenmaten J

Shi et al, PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR'19
CV3DST | Laura Leal-Taixe, Aljosa Osep




Point RCNN

Car (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)

Method Modality ‘ Easy = Moderate Hard | Easy Moderate Hard | Easy Moderate Hard

MV3D [4] 7109 6235 5512 ] - ; B - - -
UberATG-ContFuse [I7] f RGB + LiDAR [ 82.54 6622  64.04 | - - ] _ _ ]
AVOD-FPN (14 RGB +LiDAR | 8194 7188 6638 | 5080  42.81  40.88 | 64.00  52.18  46.61

F-PointNet |25 RGB + LiDAR § 81.20 70.39 62.19 | 51.21 44.89 40.23 | 71.96 56.77 50.39
VoxelNet |43 LiDAR 77.47 65.11 57.73 | 39.48 33.69 31.51 | 61.22 48.36 44.37

SECOND |40 LiDAR 83.13 73.66 66.20 | 51.07 42.56 37.29 | 70.51 53.85 46.90

LIDAR 85.94  75.76  68.32 | 4043 4178 38.63 | 73.93  59.60  53.59

Shi et al, PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR'19
CV3DST | Laura Leal-Taixe, Aljosa Osep 4




3D Multi-Object Tracking

In:
Object detections ~ 3D boxes |2 |[% @@
=> position + orientation o 'S
Out: = @El;_
Temporally linked detections “U T
=™

Reminder: Tracking-by-detection

e [rain object detectors for target classes
e [etect + associate over time

e Challenges: noisy detections, occlusions!

48
CV3DST | Laura Leal-Taixe, Aljosa Osep



Object Tracking: AB3D-MOT

« Embarrassingly simple ', great performance!
— Dynamics model: const-velocity Kalman Filter
— Hungarian algorithm, 3D loU as matching cost
— Why does this simple approach work so well in this
case?

CV3DST | Laura Leal-Taixé, Aljosa Osep Weng et al, A Baseline for 3D Multi-Object Tracking, IROS20



—Nd-to-

Fpoint

Per-point
MLP

CV3DST | Laura Leal-Taixe, Aljosa Osep

-nd Detection + Tracking

For each, regress:
e Velocity vector
e Spatial dim. (3)

H

v

[
4L

T. Yin et al., Center-based 3D object detection and tracking from point clouds, CVPR’21



Summary So Far

Simple (yet effectivel) approaches:

e Detect + Kalman filter (\Weng et al, IROS20),
e Detect + regress eze (CenterPoint, Yin et al., CVPR21)
e Associate (Greedy, Hungarian; 3D loU or Euclid. dist)

CenterPoint in a nutshell

Lidar Sequence Detection + velocity

e Modeling long-range geometric relations?

CV3DST | Laura Leal-Taixe, Aljosa Osep



PolarMOT: Graph Neural Networks!

3D Detections

(Sparse!) Graph

PN

Classification

Output

pd Y

g ¢

g Y0

u

NN

Localized polar edge
parametrization

CV3DST | Laura Leal-Taixe, Aljosa Osep

Kim et al.,, PolarMOT: How far can geometric relations take us in 3D multi-
object tracking?, ECCV’2022




How to Parametrize?

Y
A
I ‘o v
o
[ |

e Cartesian coordinates?
o WOrks but .. »9= A0 =

Az
Ay

J
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e | ocalized polar coordinates! [P
o Detections ~ two oriented points S i

m \Velocity magnitude
m Polarangle 0
hi; = Aoi,05) =

o Why? gf i
o Invariant to global ref frame

o Non-holonomic motion prior
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PolarMOT: Key Results

vs. offline

e Our method uses CenterPoint 3D detections as input

class-specific AMOTA 1

Mothodiname Input IDs | Recall + AMOTA ¢

modality | total average average car ped bicycle bus motor trailer truck
Ours offi. 3D 213 75.14 71.14 85.83 81.70 54.10 87.36 72.32 48.67 68.03
Ours onl. 3D 439 72.46 67.27 81.26 78.79 49.38 82.76 67.19 45.80 65.70
CenterPoint onl. 3D 593 70.62 65.31 84.23 77.29 43.70 80.16 59.16 51.47 65.39

ar ar
e Offline (batch) variant is a top-performer (online: same model,
different graph construction)

e Ablations on (sparse) online graph construction => extra slides!

FP + FN + IDS
numg;

MOTA =1 —

Kim et al.,, PolarMOT: How far can geometric relations take us in 3D multi- -
20
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D Computer Vision In the
Era of Deep Learning

4D Segmentation




3D Semantic Segmentation

° Existing datasets (Dense, pre-aligned RGB-D)

Dai et al, ScanNet: Richly-annotated
3D Reconstructions of Indoor Scenes,

Behley et al, SemanticKITTI: A Dataset for Semantic Scene Understanding of LIDAR Sequences, ICCV'19
Fong et al.. Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation and tracking, IEEE RAL 2022

CV3DST | Laura Leal-Taixe, Aljosa Osep
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multi—object tracking

CV3DST | Laura Leal-Taixe, Aljosa Osep

3D Vision
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4D Lidar Panoptic Segmentation

e /nput a point cloud sequence
o Cutput per-point semantics + identity (space + timel)

e 1st benchmark!

o (Lidar) segmentation and tracking — STQ = (4Q x $Q)>
qua“ty (IOO/'/’)ZL_CQ/”) tric) Association Quality Segmentation Quality

4D Semantic + Instance Predictions
g A [

e First models / baselines:

o Detect + segment + track-by-det
o End-to-end!

CV3DST | Laura Leal-Taixé, Aljoda Osep Ayguen et al,, 4D Lidar Panoptic Segmentation, CVPR21



4D LIDAR Panoptic Segmentation

Semantic Segmentation Instance Segmentation

CV3DST | Laura Leal-Taixé, Alioga Ogep Ayguen et al,, 4D Lidar Panoptic Segmentation, CVPR21



4D Panoptic Lidar Segmentation

- =

=
ﬁ
o

Point sampling
4D Point Cloud Encoder-Decoder 4D Semantic + Instance Predictions
' o Network S e 5
O
))
€
S Semantic head O  Objectness head b Point variance head E Point embeddings

CV3DST | Laura Leal-Taixé, Aljoda Osep Ayguen et al,, 4D Lidar Panoptic Segmentation, CVPR21
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4D Panoptic Lidar Segmentation

center for object 1 (¢;)EEEE) ¢, = (x;, V3, 7, t;) Emmmy M1 lookup &-map at (x;, y1, t;)
O1x » O1y : lookup Z*map at (xy, y;, t;)

Accumulated point clou Learned point embeddings

L.

Query point embedding ty)

Variance

.

& |
G b

center for object 2 (c2)|::>¢2 = (X3, V2 Z3, |:> Mo lookup £-map at (X, ¥, t3)

O2x » 02y : lookup Z'map at (x,, 5, t;)

1
Dij = E
(2m)% (2

L XP ( E'_l(ei = uj))
2 «

Instance mean embedding
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(4D) Panoptic Lidar Segmentation

e [ idar panoptic segmentation community: bottom-up
o Segmentation-centric methods
o Instance segmentation as point-grouping

DS-Net GP-SaNet
b= ! -
S e
Semantic Segmentation == Cenfé;;dff;et Instance Pr;(;ic;:ion Semantic Segmentation === Graph-Based Instance Prediction

e Bottom-up approach pitfalls:
o Instance prediction is very local
-> Over & under segmentation!

(b) DS-Net
F. Hong, H. Zhou, X. Zhu, H. Li, Z. Liu: LIDAR-based Panoptic Segmentation via Dynamic Shifting Network, CVPR21
R. Razani, R. Cheng, E. Li, E. Taghavi, Y. Ren, L. Bingbing: GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network, ICCV’21

CV3DST | Laura Leal-Taixe, Aljosa Osep



MOST: Modal Segmentation and

Tracking
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MOST: Results
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MOST: Results

Agarwalla et al, Modal Recognition for Lidar Panoptic Segmentation and Tracking, arXiv 2022 (soon!)
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Hey, How About Stereo?

Stereo/Mono images

Depth estimation

- ‘ 4 4 * SWIMOM * _ * 4
as depth o

Depth map

Pseudo LiDAR

3D object detection

Predicted 3D boxes

IoU=0.5 IoU =0.7

Detection algorithm Input signal Easy Moderate Hard Easy Moderate Hard
MoNO3D [4] Mono 3057252 | 224/182 | 192/155 | 52/25 52/23 4.1/23
MLF-MONO [37] Mono 55.0/479 | 36.7/29.5 | 31.3/264 | 22.0/10.5 | 13.6/5.7 11.6/54
AVOD Mono 61.2/57.0 | 454/42.8 | 383/36.3 | 33.7/19.5 | 246/17.2 | 20.1/16.2
F-POINTNET Mono 70.8/66.3 | 49.4/42.3 | 42.7/38.5 | 40.6/28.2 | 26.3/18.5 | 229/16.4
3DOP [5] Stereo 55.0/46.0 | 41.3/34.6 | 34.6/30.1 | 12.6/6.6 9.5/5.1 7.6/4.1
MLF-STEREO [33] Stereo - 53.7/47.4 - - 19.5/9.8 -
AVOD Stereo 89.0/88.5 | 77.5/76.4 | 68.7/61.2 | 749/61.9 | 56.8/45.3 | 49.0/39.0
F-POINTNET Stereo 89.8/89.5 | 77.6/75.5 | 68.2/66.3 | 72.8/59.4 | 51.8/39.8 | 44.0/33.5
AVOD [17] LiDAR + Mono | 90.5/90.5 | 89.4/89.2 | 88.5/88.2 | 89.4/82.8 | 86.5/73.5 | 79.3/67.1
F-POINTNET [25] LiDAR + Mono | 96.2/96.1 | 89.7/89.3 | 86.8/86.2 | 88.1/82.6 | 82.2/68.8 | 74.0/62.0

Wang et al., Pseudo-LIDAR from Visual Depth Estimation, CVPR'19
CV3DST | Laura Leal-Taixe, Aljosa Osep



Takeaways

e 3D vision: robots operate in 3D world! 3D scene
understanding is crucial.

e Nowadays, we know how to learn representations

from unstructured point clouds, yay!
o =>3D object detection, semantic/instance
segmentation, tracking!

e 3D detection/tracking/segmentation vibrant and
exciting area of research!

CV3DST | Laura Leal-Taixe, Aljosa Osep



Thank you for your
attention!

YES | HAVE A QUESTION
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