Video anonymization

Prof. Dr. Laura Leal-Taixé

Technical University of Munich

“All human beings have three lives: public, private, and secret.”

Gabriel García Márquez
Motivation

How I see my work

- Challenging
- Plenty of applications: autonomous driving, robot navigation

How others see my work

Big brother

Data from www.motchallenge.net
Motivation

How I see my work

• Challenging
• Plenty of applications: autonomous driving, robot navigation

How others see my work

I do not care if this is Mark or John, I only use a label “person”

Data from www.motchallenge.net
Motivation

Just remove a face using blur/square/mosaic

Detection and tracking performance is heavily affected.
Goals for anonymization

Properties:
- Anonymous
- Realistic (for a CV algorithm)
- New Identity
- Control
- Temporal Consistency
Face swap

Properties:

- Anonymous
- Realistic (for a CV algorithm)
- New Identity
- Control
- Temporal Consistency

Reference:
Face swap

Properties:
- Anonymous
- Realistic (for a CV algorithm)
- New Identity
- Control
- Temporal Consistency
Anonymization: previous work

Properties:

- Anonymous
- Realistic (for a CV algorithm)
- New Identity
- Control (one-to-many)
- Temporal Consistency
Who is he?

More anonymized

Less anonymized

Gafni et al. “Live face de-identification in video”. ICCV 2019

M. Maximov et al. „CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks“. CVPR 2020
Anonymization: previous work

Properties:

- Anonymous
- Realistic (for a CV algorithm)
- New Identity
- Control (one-to-many)
- Temporal Consistency
CIAGAN

- Anonymous
- Realistic
- New Identity
- Control Temporal Consistency
CIAGAN

Person/Full body

Control over identity

Also works on full bodies!

Reference:
Methodology
Overview of CIAGAN

Input

Landmark detection

Shape + Background

CNN

MLP

Control over identity

Output / Fake
Partial Landmarks
- We do not want appearance of the input face to "leak" to the new face
- Mouth for expressions
- Nose & Frame for orientation
- "Free" temporal consistency

Background Image
- From Landmarks
- For better blending of the face with the head and hair
Without further losses, the network overfits and simply does reconstruction.
Losses 2: ID Loss

- **Input**: Landmark detection
- **Shape + Background**
- **Training set**: Identity
- **CNN**: Output / Fake
- **MLP**: Control over identity
- **Advanced Discriminator**: Real / Fake
- **Identity Discriminator**: ID Embeddings
Identity Guidance

- **Input:**
 - One-hot vector encoding of a random ID of the training set
 - We pass it through an MLP and obtain a representation which is then concatenated at the bottleneck of the CNN

- **Decoder:**
 - Effectively uses the encoded information of the initial ID and mixes it with one of the random training IDs

In how many ways can we anonymize an image?
Identity Discriminator

- Pre-train for re-ID on real images with Proxy-NCA loss
- Contrastive loss during GAN training: brings the embedding of the new ID closer to the real training ID embedding
The identity discriminator is not used as adversarial, is it a guidance for the generator.
And for multi-object tracking?

- At each frame of a video:
 - We apply the *same transformation* to all pedestrians, so that we can perform tracking across frames.

- For a different camera
 - We apply the *a different transformation* to avoid long-term tracking and potential misuse of the data.
Results
Qualitative results

Control identity

Source
Detection & Identification

- Detection and identification on the CelebA dataset

<table>
<thead>
<tr>
<th>Models</th>
<th>Detection (↑)</th>
<th>Identification (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dlib</td>
<td>SSH</td>
</tr>
<tr>
<td>Original</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Pixelization 16 by 16</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pixelization 8 by 8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Blur 9 by 9</td>
<td>90.6</td>
<td>38.6</td>
</tr>
<tr>
<td>Blur 17 by 17</td>
<td>68.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Ours</td>
<td>99.9</td>
<td>98.7</td>
</tr>
</tbody>
</table>

Blurring |
Pixelization |
Ablation studies

<table>
<thead>
<tr>
<th>Models</th>
<th>Detection (↑)</th>
<th>Recall@1 (↓)</th>
<th>FID (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siamese</td>
<td>99.9</td>
<td>1.3</td>
<td>2.1</td>
</tr>
</tbody>
</table>

- Face detection
- Identification
- Visual quality
Ablation studies

- Classification of the Identity instead of Siamese training:
 - Identity recall goes down, mostly because the generated faces start to have artifacts \(\rightarrow\) low detection rate and poor visual quality

<table>
<thead>
<tr>
<th>Models</th>
<th>Detection (↑)</th>
<th>Recall@1 (↓)</th>
<th>FID (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siamese</td>
<td>99.9</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Classification</td>
<td>64.6</td>
<td>0.4</td>
<td>63.2</td>
</tr>
</tbody>
</table>
Ablation studies

- Input are full face images instead of landmarks.
 - Visual quality of the generated faces and detectability both decrease

<table>
<thead>
<tr>
<th>Models</th>
<th>Detection (↑)</th>
<th>Recall@1 (↓)</th>
<th>FID (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siamese</td>
<td>99.9</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Classification</td>
<td>64.6</td>
<td>0.4</td>
<td>63.2</td>
</tr>
<tr>
<td>Faces</td>
<td>98.3</td>
<td>1.1</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Comparison with SOA

Two methods for face identification

<table>
<thead>
<tr>
<th>De-ID method</th>
<th>VGGFace2 (↓)</th>
<th>CASIA (↓)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.986 ±0.010</td>
<td>0.965 ±0.016</td>
</tr>
<tr>
<td>Gafni et al.</td>
<td>0.038 ±0.015</td>
<td>0.035 ±0.011</td>
</tr>
<tr>
<td>Ours</td>
<td>0.029 ± 0.012</td>
<td>0.026 ± 0.015</td>
</tr>
</tbody>
</table>

- **We are able to mask identities better**
 - While also providing more diversity in the output and more control
Comparison with SOA

- We are able to mask identities better
 - While also providing more diversity in the output and more control
Glasses & Hair & Makeup

Source

Anonymizations

Source

Anonymization
<table>
<thead>
<tr>
<th>Source</th>
<th>Anonymizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limitations

<table>
<thead>
<tr>
<th>Source</th>
<th>Part to replace</th>
<th>Landmark</th>
<th>Background</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Extreme Poses**
- **Eyes**
Future Work

- Occlusions
- Different Domains
- Study the effect on multiple object tracking
- Do not depend on the output of the landmarks
- More realistic and high-definition images
- Work on explicit temporal consistency
The Team

Maxim Maximov
Ismail Elezi
Laura Leal-Taixé
Thank you

Prof. Dr. Laura Leal-Taixé

Technical University of Munich

“All human beings have three lives: public, private, and secret.”

Gabriel García Márquez