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Task definition

• Object detection problem

2

(x,y)

w

h

Bounding box.  (x,y,w,h)

CV3DST | Prof. Leal-Taixé



Task definition

• Object detection problem

3

Bounding box.  (x,y,w,h)

+
class

CV3DST | Prof. Leal-Taixé



A bit of history
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• 1. Template matching + sliding window
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
– Occlusions: we need to see the WHOLE object
– This works to detect a given instance of an object but not 

a class of objects
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Traditional object detection methods

• Problems of 1. Template matching + sliding window
– Occlusions: we need to see the WHOLE object
– This works to detect a given instance of an object but not 

a class of objects
– Objects have an unknown position, scale and aspect 

ratio, the search space is searched inefficiently with 
sliding window
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Traditional object detection methods

• 2. Feature extraction + classification
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Viola-Jones detector

• 2. Feature extraction + classification
– Learning multiple weak learners to build a strong 

classifier
– That is, make many small decisions and combine them 

for a stronger final decision
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Viola-Jones detector

• 2. Feature extraction + classification
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

Haar features
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Viola-Jones detector
• 2. Feature extraction + classification

– Step 1: Select your Haar-like features
– Step 2: Integral image for fast feature evaluation

• I can evaluate which parts of the image have highest cross-
correlation with my feature (template)

– Step 3: AdaBoost for to find weak learner
• I cannot possibly evaluate all features at test time for all 

image locations
• Learn the best set of weak learners 
• Our final classifier is the linear combination of all weak 

learners 
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Viola-Jones detector
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Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
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Histogram of Oriented Gradients

• 2. Feature extraction + classification
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Average gradient image over training samples à gradients provide 
shape information. Let us create a descriptor that exploits that.

Gradient: blue arrows show the 
gradient, i.e., the direction of 
greatest change of the image.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Histogram of Oriented Gradients

• 2. Feature extraction + classification
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HOG descriptor à Histogram of oriented gradients.
Compute gradients in dense grids, compute gradients and create a 
histogram based on gradient direction.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Histogram of Oriented Gradients

• 2. Feature extraction + classification
– Step 1: Choose your training set of images that contain 

the object you want to detect.
– Step 2: Choose a set of images that do NOT contain that 

object.

– Step 3: Extract HOG features on both sets.
– Step 4: Train an SVM classifier on the two sets to detect 

whether a feature vector represents the object of interest 
or not (0/1 classification). 
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Histogram of Oriented Gradients

• 2. Feature extraction + classification
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HOG features weighted by the positive SVM weights – the ones 
used for the pedestrian object classifier.

Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005.CV3DST | Prof. Leal-Taixé



Deformable Part Model

• Also based on HOG features, but based on body part 
detection à more robust to different body poses

21Felzenszwalb et al. A discriminatively trained, multiscale, deformable part model. CVPR 2008.CV3DST | Prof. Leal-Taixé



How to move 
towards general 
object detection?
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What defines an object?

• We need a generic, class-agnostic objectness
measure: how likely it is for an image region to 
contain an object
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Very likely to be 
an object

Maybe it is an 
object
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What defines an object?

• We need a generic, class-agnostic objectness
measure: how likely it is for an image region to 
contain an object

• Using this measure yields a number of candidate 
object proposals or regions of interest (RoI) where to 
focus.
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+ classifier
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Object proposal methods

• Selective search: van de Sande et al. Segmentation 
as selective search for object recognition. ICCV 2011.

• Edge boxes: Zitnick and Dollar. Edge boxes: locating 
object proposals from edges. ECCV 2014.
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Do we want all proposals?

• Many boxes trying to explain one object
• We need a method to keep only the “best” boxes
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Non-Maximum Suppression (NMS)

• Many boxes trying to explain one object
• We need a method to keep only the “best” boxes
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Non-Maximum Suppression (NMS)
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Start with anchor box i

For another box j
If they overlap

Discard box i if the 
score is lower than 
the score of j

Overlap = to be defined Score = depends on the task
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Region overlap
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• We measure region overlap with the Intersection 
over Union (IoU) or Jaccard Index: 

J(A,B) =
|A \B|
|A [B|
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Intersection Union
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Non-Maximum Suppression (NMS)
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Start with anchor box i

For another box j
If they overlap

Discard box i if the 
score is lower than 
the score of j

Overlap = to be defined Score = depends on the task
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NMS: the problem

31Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth positions
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NMS: the problem

• Choosing a narrow threshold

32Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth positions

False positives

Low Precision
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NMS: the problem

• Choosing a wider threshold

33Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015

Ground truth position

False positive
Low Recall

False negative

CV3DST | Prof. Leal-Taixé



Non-Maximum Suppression (NMS)

• NMS will be used at test time. Most detection 
methods (even Deep Learning ones) use NMS!
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Learning-based 
detectors
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Types of object detectors

• One-stage detectors

• Two-stage detectors
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Types of object detectors

• One-stage detectors
– YOLO, SSD, RetinaNet
– CenterNet, CornerNet, ExtremeNet

• Two-stage detectors
– R-CNN, Fast R-CNN, Faster R-CNN
– SPP-Net, R-FCN, FPN
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Object detection
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