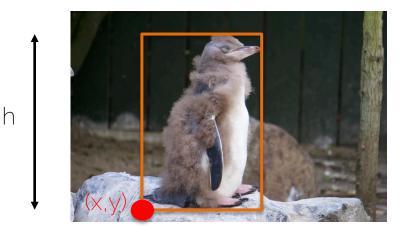


Object detection

Task definition

• Object detection problem

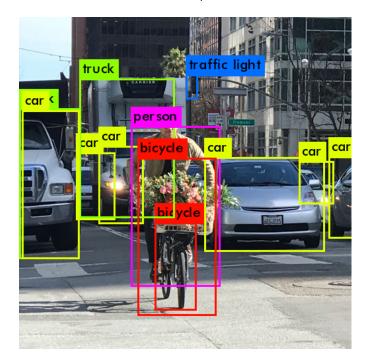


W

Bounding box. (x,y,w,h)

Task definition

• Object detection problem



Bounding box. (x,y,w,h)

+ class

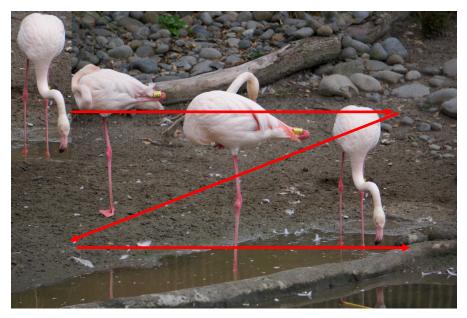
A bit of history

• 1. Template matching + sliding window

Template

Image

• 1. Template matching + sliding window



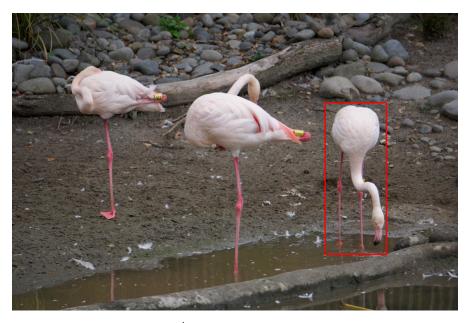
• 1. Template matching + sliding window

For every position you evaluate how much do the pixels in the image and template correlate

LOW correlation

Image

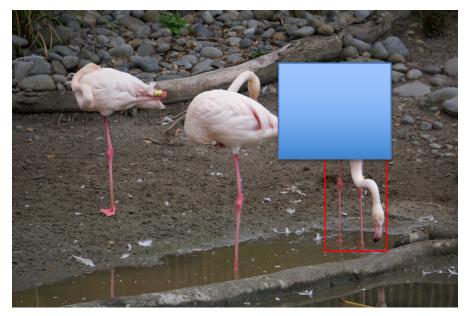
• 1. Template matching + sliding window



For every position you evaluate how much do the pixels in the image and template correlate

HIGH correlation

• Problems of 1. Template matching + sliding window



For every position you evaluate how much do the pixels in the image and template correlate

Image

LOW correlation

- Problems of 1. Template matching + sliding window
 - Occlusions: we need to see the WHOLE object
 - This works to detect a given instance of an object but not a class of objects

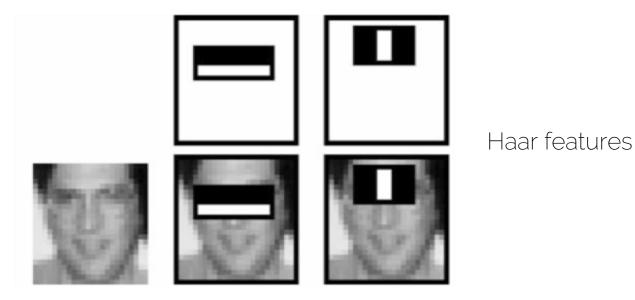
Appearance and shape changes

- Problems of 1. Template matching + sliding window
 - Occlusions: we need to see the WHOLE object
 - This works to detect a given instance of an object but not a class of objects
 - Objects have an unknown position, scale and aspect ratio, the search space is searched inefficiently with sliding window

• 2. Feature extraction + classification

- 2. Feature extraction + classification
 - Learning multiple weak learners to build a strong classifier
 - That is, make many small decisions and combine them for a stronger final decision

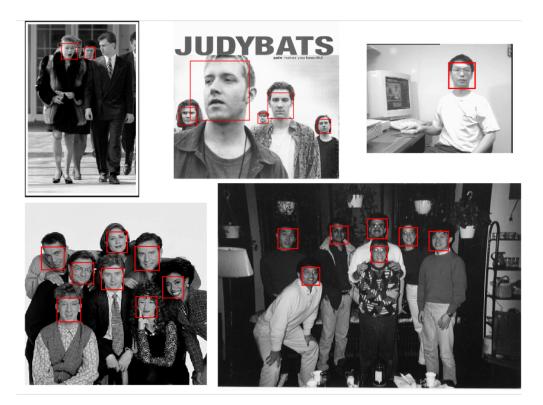
• 2. Feature extraction + classification



Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

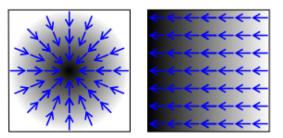
- 2. Feature extraction + classification
 - Step 1: Select your Haar-like features
 - Step 2: Integral image for fast feature evaluation
 - I can evaluate which parts of the image have highest crosscorrelation with my feature (template)
 - Step 3: AdaBoost for to find weak learner
 - I cannot possibly evaluate all features at test time for all image locations
 - Learn the best set of weak learners
 - Our final classifier is the linear combination of all weak learners

Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.



Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

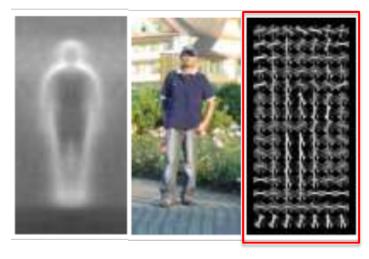
• 2. Feature extraction + classification



Gradient: blue arrows show the gradient, i.e., the direction of greatest change of the image.

Average gradient image over training samples \rightarrow gradients provide shape information. Let us create a descriptor that exploits that.

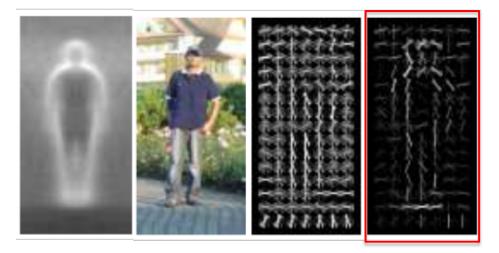
• 2. Feature extraction + classification



HOG descriptor → Histogram of oriented gradients. Compute gradients in dense grids, compute gradients and create a histogram based on gradient direction.

- 2. Feature extraction + classification
 - Step 1: Choose your training set of images that contain the object you want to detect.
 - Step 2: Choose a set of images that do NOT contain that object.
 - Step 3: Extract HOG features on both sets.
 - Step 4: Train an SVM classifier on the two sets to detect whether a feature vector represents the object of interest or not (0/1 classification).

• 2. Feature extraction + classification



HOG features weighted by the positive SVM weights – the ones used for the pedestrian object classifier.

Deformable Part Model

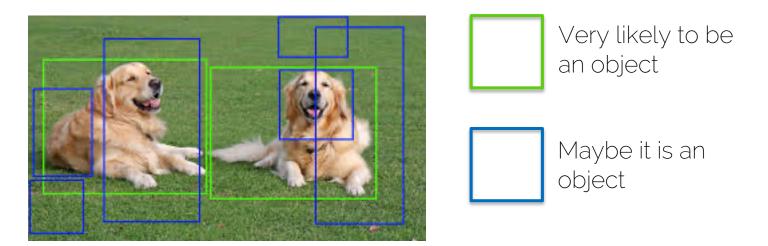
 Also based on HOG features, but based on body part detection → more robust to different body poses



How to move towards general object detection?

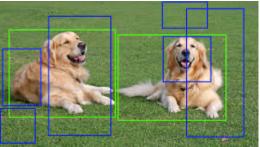
What defines an object?

• We need a generic, **class-agnostic** objectness measure: how likely it is for an image region to contain an object



What defines an object?

- We need a generic, **class-agnostic** objectness measure: how likely it is for an image region to contain an object
- Using this measure yields a number of candidate object proposals or regions of interest (Rol) where to focus.



+ classifier

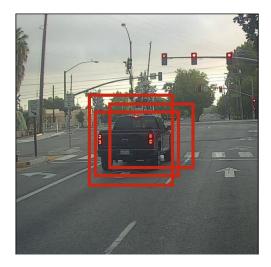
Object proposal methods

• Selective search: van de Sande et al. Segmentation as selective search for object recognition. ICCV 2011.

• Edge boxes: Zitnick and Dollar. Edge boxes: locating object proposals from edges. ECCV 2014.

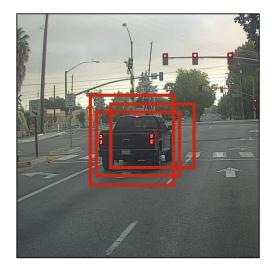
Do we want all proposals?

- Many boxes trying to explain one object
- We need a method to keep only the "best" boxes



Non-Maximum Suppression (NMS)

- Many boxes trying to explain one object
- We need a method to keep only the "best" boxes



Non-Max Suppression

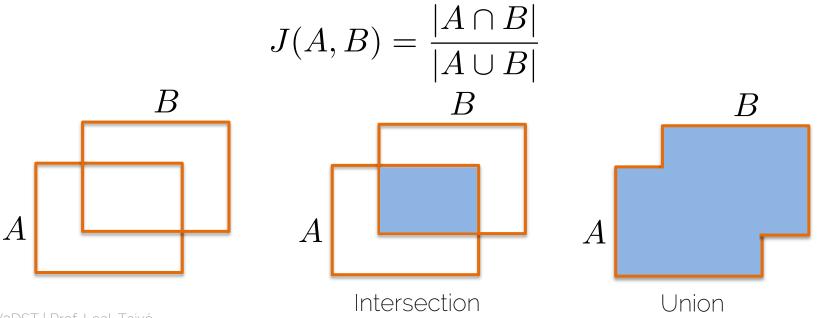
Non-Maximum Suppression (NMS)

Algorithm 1 Non-Max Suppression			
1:	procedure NMS(B,c)		
2:	$B_{nms} \leftarrow \emptyset$		
3:	for $b_i \in B$ do	Start with anchor box i	
4:	$discard \leftarrow False$		
5:	for $b_j \in B$ do	— For another box j	
6:	if same $(b_i, b_j) > \lambda_{nms}$ then \checkmark	If they overlap	
7:	if $score(c, b_j) > score(c, b_i)$ then		
8:	$discard \leftarrow \text{True}$	Discard box i if the	
9:	if not discard then	score is lower than	
10:	$B_{nms} \leftarrow B_{nms} \cup b_i$	the score of j	
11:	return B_{nms}		

Overlap = to be defined Score = depends on the task

Region overlap

• We measure region overlap with the Intersection over Union (IoU) or Jaccard Index:

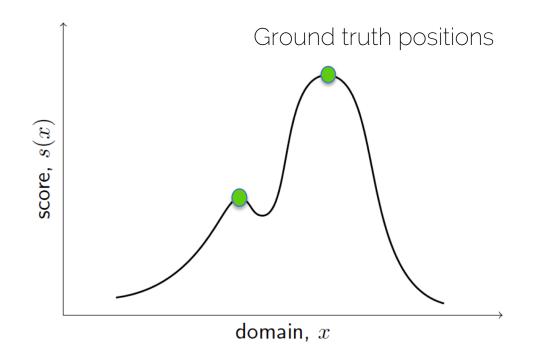


Non-Maximum Suppression (NMS)

Algorithm 1 Non-Max Suppression			
1:	procedure NMS(B,c)		
2:	$B_{nms} \leftarrow \emptyset$		
3:	for $b_i \in B$ do	Start with anchor box i	
4:	$discard \leftarrow False$		
5:	for $b_j \in B$ do	— For another box j	
6:	if same $(b_i, b_j) > \lambda_{nms}$ then \leftarrow	If they overlap	
7:	if $score(c, b_j) > score(c, b_i)$ then		
8:	$discard \leftarrow \text{True}$	——— Discard box i if the	
9:	if not discard then	score is lower than	
10:	$B_{nms} \leftarrow B_{nms} \cup b_i$	the score of j	
11:	return B_{nms}		

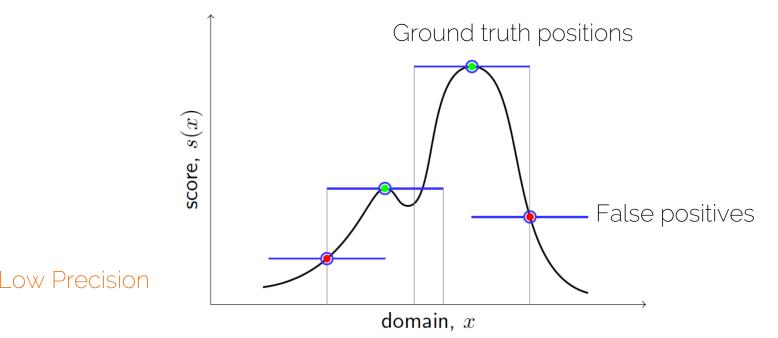
Overlap = to be defined Score = depends on the task

NMS: the problem



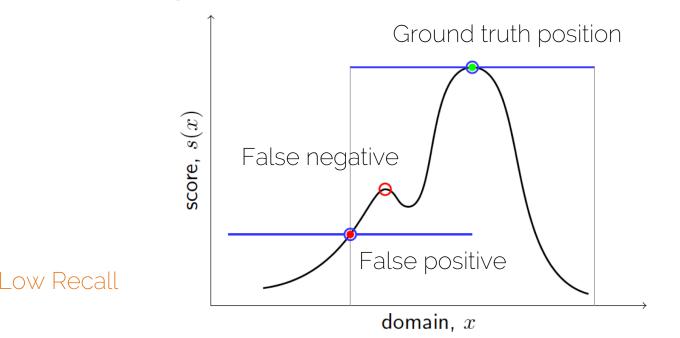
NMS: the problem

• Choosing a narrow threshold



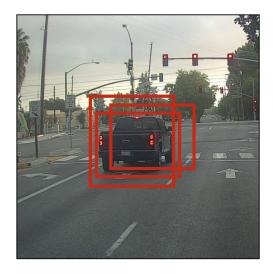
NMS: the problem

• Choosing a wider threshold

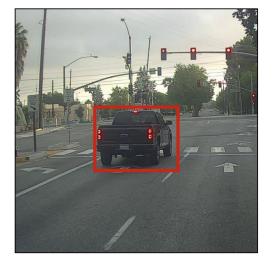


Non-Maximum Suppression (NMS)

• NMS will be used at test time. Most detection methods (even Deep Learning ones) use NMS!



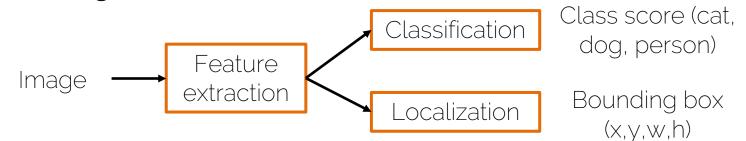
Non-Max Suppression



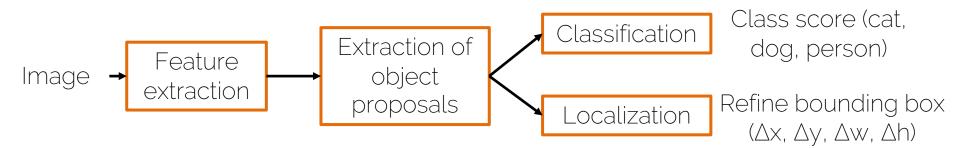
Learning-based detectors

Types of object detectors

• One-stage detectors



• Two-stage detectors



Types of object detectors

- One-stage detectors
 - YOLO, SSD, RetinaNet
 - CenterNet, CornerNet, ExtremeNet
- Two-stage detectors
 - R-CNN, Fast R-CNN, Faster R-CNN
 - SPP-Net, R-FCN, FPN

Object detection