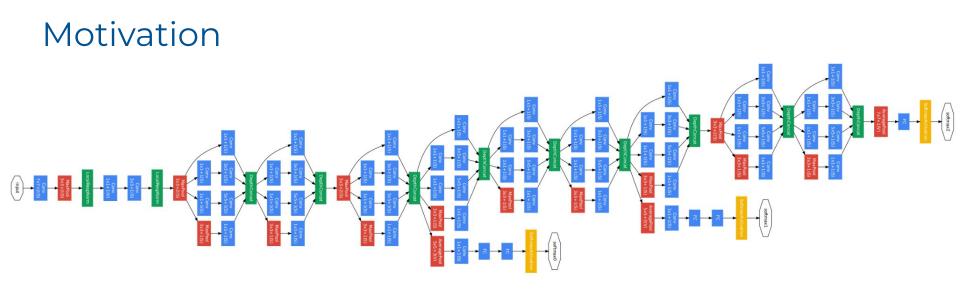


Learning Transferable Architectures for Scalable Image Recognition

Recent Trends in Automated Machine Learning Technische Universität München

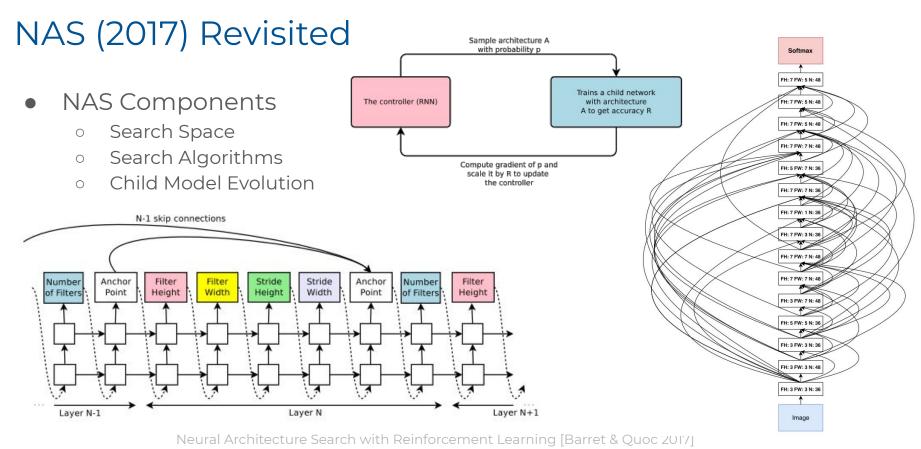
> Ahmed Bahnasy June 2nd, 2021



GoogleLeNet Architecture with all bells and whistles

- CNN models requires significant architectural Engineering !
- Can we design an algorithm to design the architecture for us?!

Source: https://arxiv.org/abs/1409.4842



Learning Transferable Architectures for Scalable Image Recognition

Technische Universität

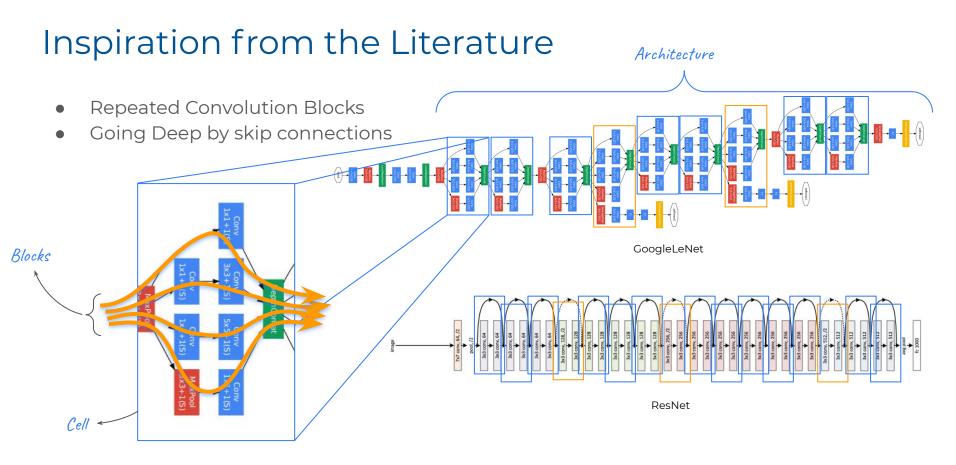
München

Seminar on Recent trends in Automated Machine Learning

Ahmed Bahnasy | 2021

NAS (2017) vs. NASNet (2018)

- NAS (2017) Limitations
 - Computationally expensive for small dataset
 - No transferability between datasets
- NASNet (2018)
 - Reduced Computation Cost
 - Transferable from small dataset to large dataset
 - Generic learned features for multiple Computer Vision tasks



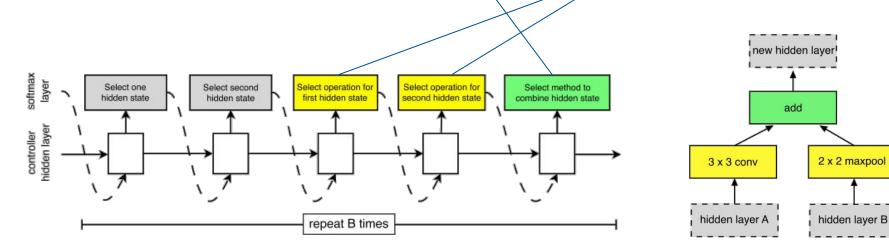
NASNet Search Space

- Design a Cell, Repeat, Stack = Architecture
- Search Space outputs Cells **not** Architectures
- Architecture Complexity is **decoupled** from depth of the network and size of the input images

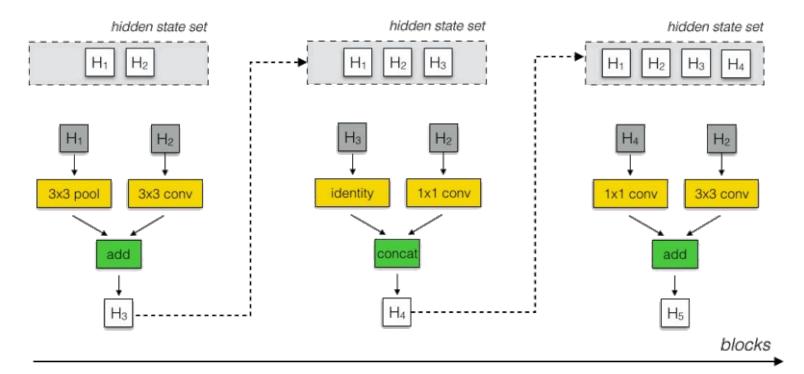
NASNet Search Space

- Predictions of each cell are grouped into **B** blocks
- Each block has 5 prediction steps
- The combination can be **addition or concatenation**
- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- · 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

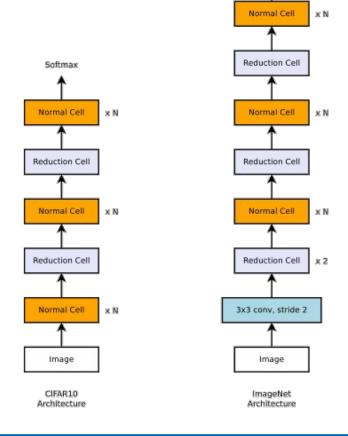


NASNet Search Space



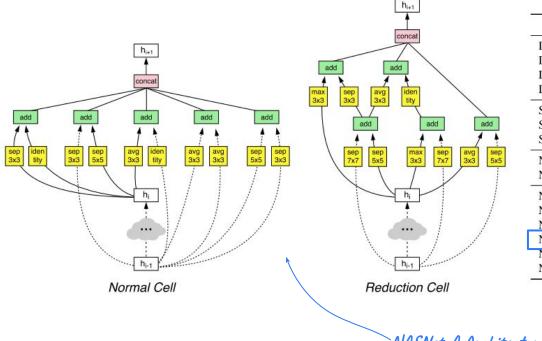
NASNet Architecture

- Composed of **repetitive** convolution cells
 - Normal Cell
 - Reduction Cell
- Free Parameters
 - # Block repetitions (N)
 - # initial convolutions



Softmax

Experiments: CIFAR-10



model	depth	# params	error rate (%)	
DenseNet $(L = 40, k = 12)$ [26]	40	1.0M	5.24	
DenseNet $(L = 100, k = 12)$ [26]	100	7.0M	4.10	
DenseNet $(L = 100, k = 24)$ [26]	100	27.2M	3.74	
DenseNet-BC $(L = 100, k = 40)$ [26]	190	25.6M	3.46	
Shake-Shake 26 2x32d [18]	26	2.9M	3.55	
Shake-Shake 26 2x96d [18]	26	26.2M	2.86	
Shake-Shake 26 2x96d + cutout [12]	26	26.2M	2.56	
NAS v3 [71]	39	7.1M	4.47	
NAS v3 [71]	39	37.4M	3.65	
NASNet-A (6 @ 768)	-	3.3M	3.41	
NASNet-A (6 @ 768) + cutout		3.3M	2.65	
NASNet-A (7 @ 2304)	-	27.6M	2.97	
NASNet-A (7 @ 2304) + cutout		27.6M	2.40	
NASNet-B (4 @ 1152)		2.6M	3.73	
NASNet-C (4 @ 640)		3.1M	3.59	

NASNet-A Architecture, best one !

Experiments: Computing Resources

- NAS (2017)
 - 800 GPUs
 - o 28 Days
 - o 22,400 GPU hours
 - Nvidia K40 GPUs
- NASNet (2018)
 - 500 GPUs
 - o 4 Days
 - 2,000 GPU hours
 - NVidia P100s

Discounting the fact of different Hardware, it is estimated to be roughly 7× more efficient

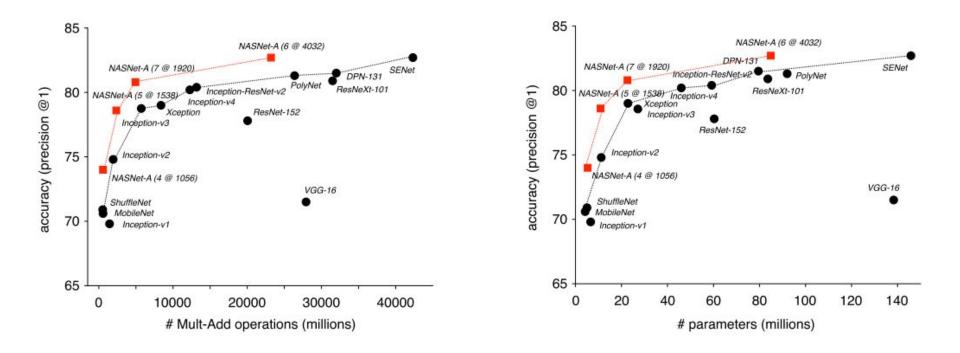
Experiments: ImageNet

Mob	ile Sco	ale No	etwork	kc /
10100	110 360	40 100	cworn	is /

Model	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V1 [59]	6.6M	1,448 M	69.8 [†]	89.9
MobileNet-224 [24]	4.2 M	569 M	70.6	89.5
ShuffleNet (2x) [70]	$\sim 5M$	524 M	70.9	89.8
NASNet-A (4 @ 1056)	5.3 M	564 M	74.0	91.6
NASNet-B (4 @ 1536)	5.3M	488 M	72.8	91.3
NASNet-C (3 @ 960)	4.9M	558 M	72.5	91.0

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [29]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (5 @ 1538)	299×299	10.9 M	2.35 B	78.6	94.2
Inception V3 [60]	299×299	23.8 M	5.72 B	78.8	94.4
Xception [9]	299×299	22.8 M	8.38 B	79.0	94.5
Inception ResNet V2 [58]	299×299	55.8 M	13.2 B	80.1	95.1
NASNet-A (7 @ 1920)	299×299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [68]	320×320	83.6 M	31.5 B	80.9	95.6
PolyNet [69]	331×331	92 M	34.7 B	81.3	95.8
DPN-131 [8]	320×320	79.5 M	32.0 B	81.5	95.8
SENet [25]	320×320	145.8 M	42.3 B	82.7	96.2
NASNet-A (6 @ 4032)	331×331	88.9 M	23.8 B	82.7	96.2

Experiments: ImageNet Computational Demand



Experiments: COCO Dataset

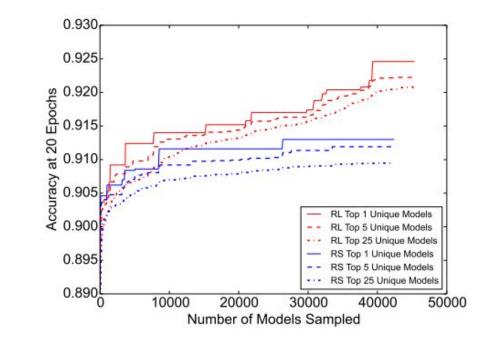
Object Detection Task

NASNet-A + RCNN Framework

Model	resolution	mAP (mini-val)	mAP (test-dev)
MobileNet-224 [24]	600×600	19.8%	2
ShuffleNet (2x) [70]	600×600	24 5% [†]	-
NASNet-A (4 @ 1056)	600×600	29.6%	-
ResNet-101-FPN [36]	800 (short side)	-	36.2%
Inception-ResNet-v2 (G-RMI) [28]	600×600	35.7%	35.6%
Inception-ResNet-v2 (TDM) [52]	600×1000	37.3%	36.8%
NASNet-A (6 @ 4032)	800×800	41.3%	40.7%
NASNet-A (6 @ 4032)	1200×1200	43.2%	43.1%
ResNet-101-FPN (RetinaNet) [37]	800 (short side)	-	39.1%

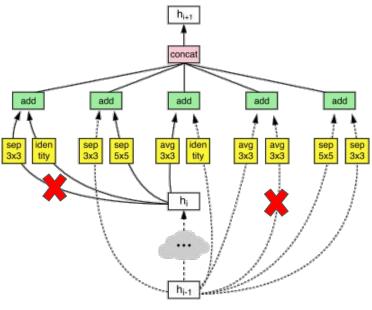
Experiments: Architecture search methods

- Random Search
 - Strong Baseline !
- Reinforcement Learning
 - Entire range superior quality models
 - Best model differs ~ 1% accuracy
 - Better mean performance on the top-5 and top-25



Experiments: Scheduled DropPath

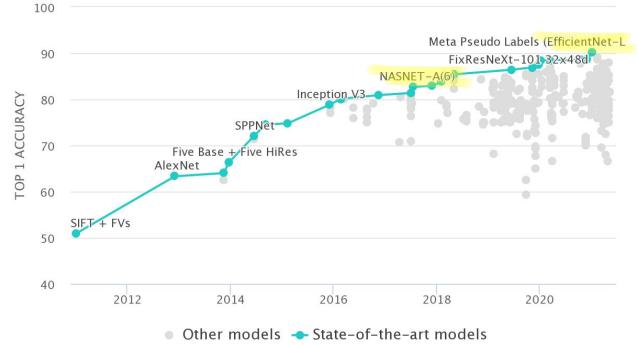
- DropPath
 - each path in the cell is stochastically dropped with some fixed probability during training
- Scheduled DropPath
 - each path in the cell is dropped out with a probability that is linearly increased over the course of training
- Observed through experiments No Further Explanation !



Normal Cell

The paper through the eyes of 2021

- EfficientNet-L2 90.2%
- ViT 88.55%
- NASNet 82.7%



https://paperswithcode.com/sota/image-classification-on-imagenet

Learning Transferable Architectures for Scalable Image Recognition Seminar on Recent trends in Automated Machine Learning

Ahmed Bahnasy | 2021

Thank you :)

Questions ??

References

- Learning Transferable Architectures for Scalable Image Recognition
- Neural architecture search with reinforcement learning
- FractalNet: Ultra-Deep Neural Networks without Residuals
- EfficientNet: Rethinking model scaling for convolutional neural networks
- EfficientNetV2: Smaller Models and Faster Training

