

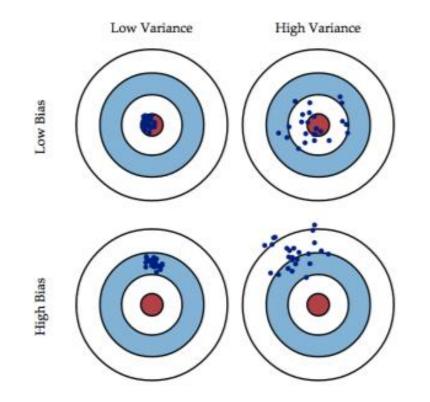
Meta Dropout Learning to Perturb Features for Generalization

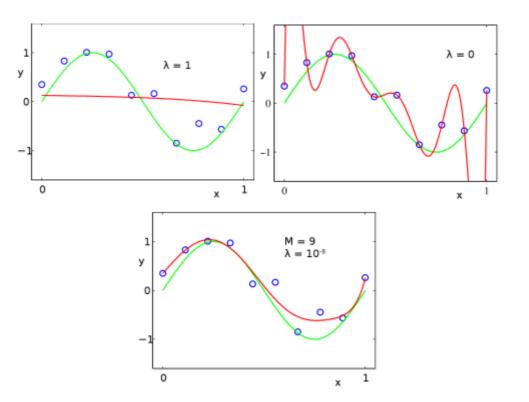
Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang

Tobias Schmidt

Munich, 7th July 2021

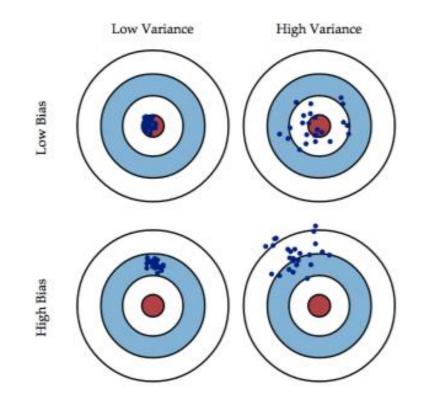
Motivation – Generalization





ТШТ

Motivation – Generalization



Common Solutions - Bias/Variance Trade-Off

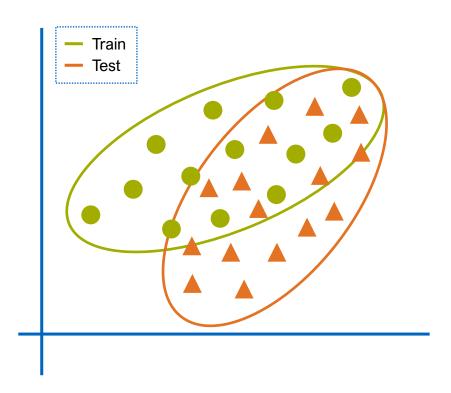
Appropriate Priors

- Image Convolutions (Shift-Invariance)
- Graph Convolutions
 (Permutation-Invariance)

. . .

Regularization

- Reducing model capacity
- Reducing information from inputs
- Smoothing loss surface
- Multi-task training
- Meta-Learning



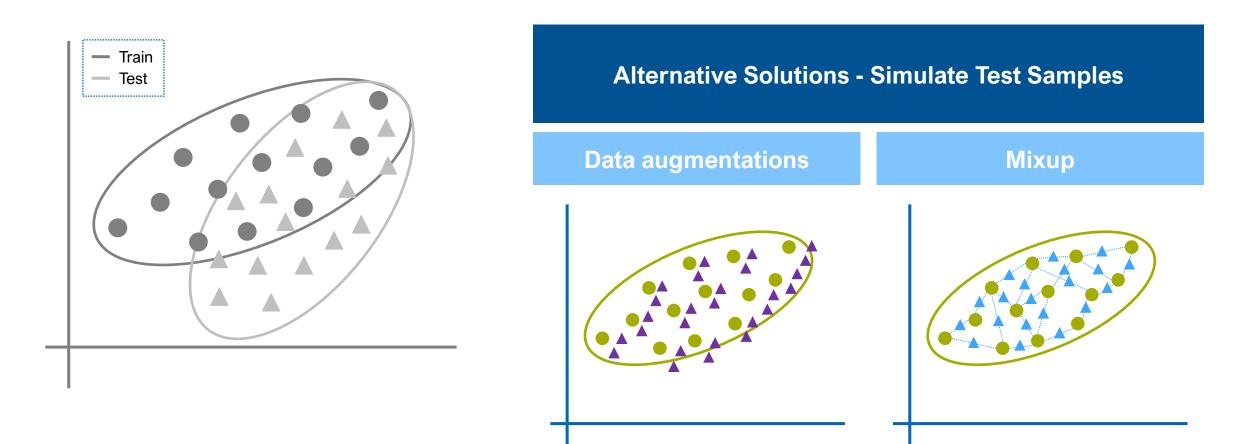
Common Solutions - Bias/Variance Trade-Off

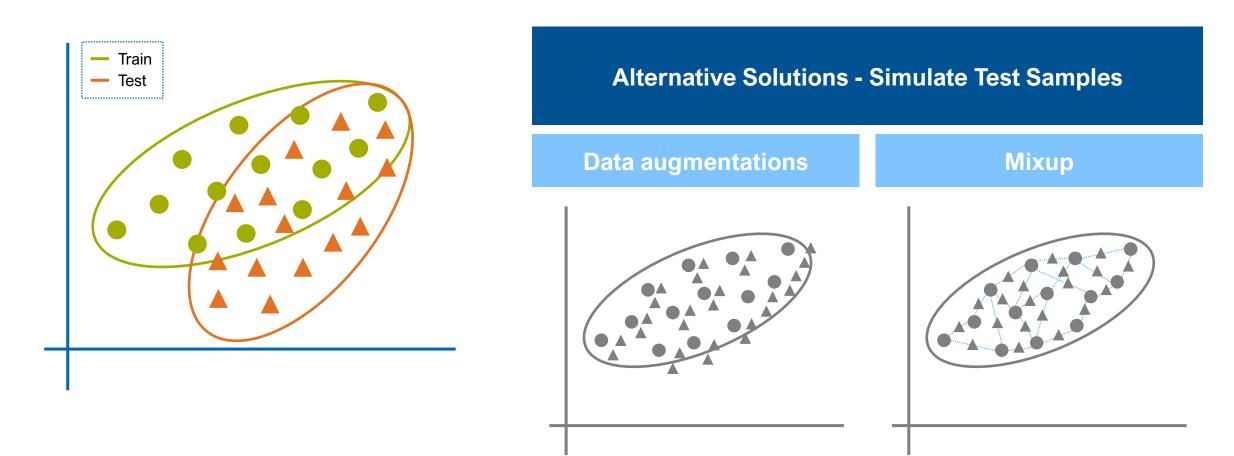
Appropriate Priors

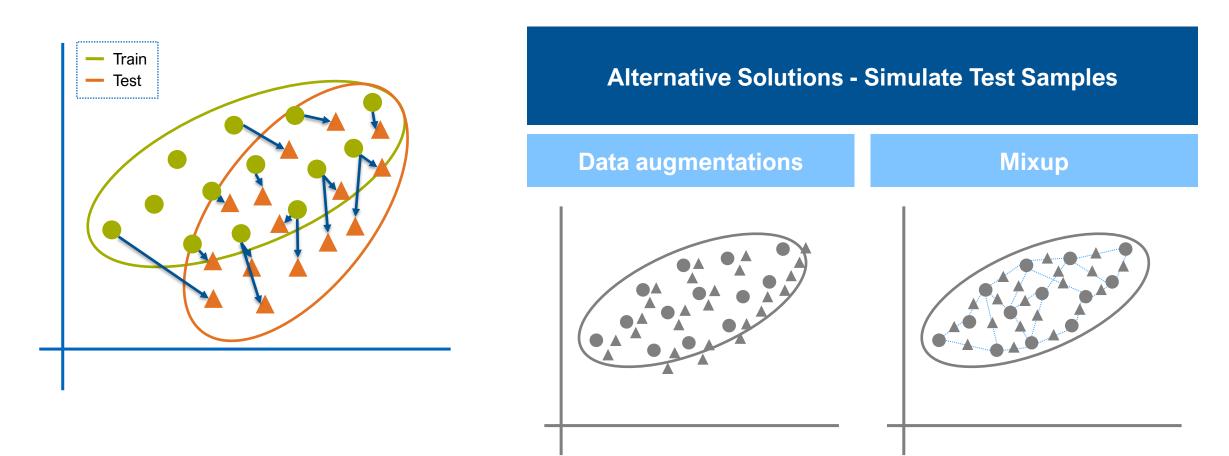
- Image Convolutions (Shift-Invariance)
- Graph Convolutions (Permutation-Invariance)
 -

Regularization

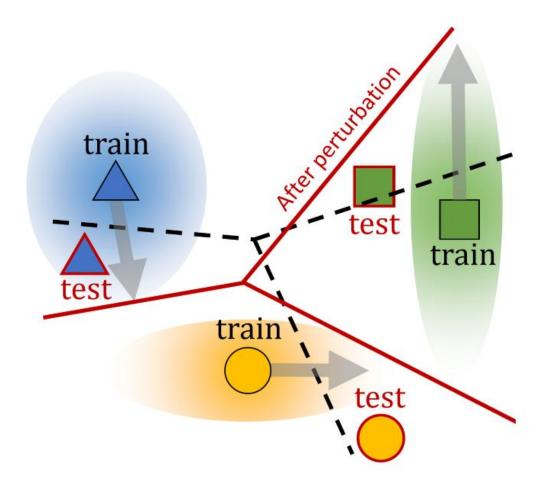
- Reducing model capacity
- Reducing information from inputs
- Smoothing loss surface
- Multi-task training
- Meta-Learning







Idea: Learn to perturb the data for better generalization

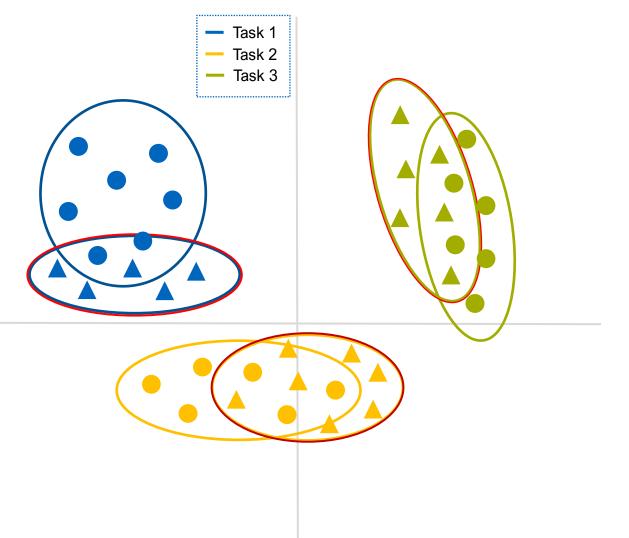


ТШ

Challenges

A training instance may need to cover multiple test instances

Meaningful directions differ from one task to another

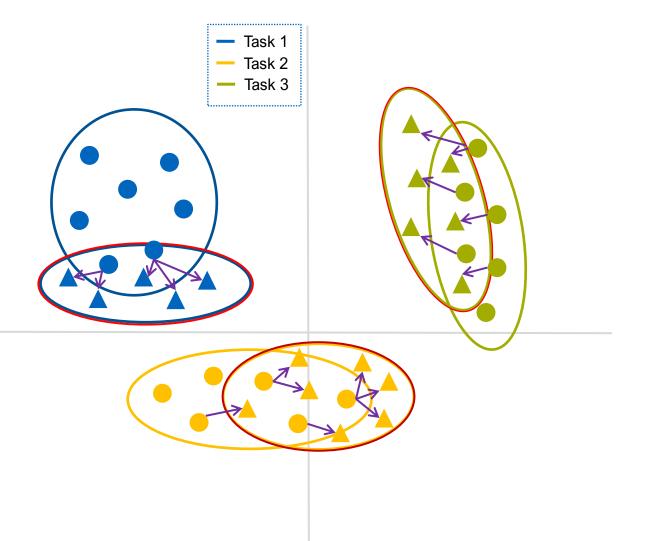


ТШ

Challenges

A training instance may need to cover multiple test instances

Meaningful directions differ from one task to another

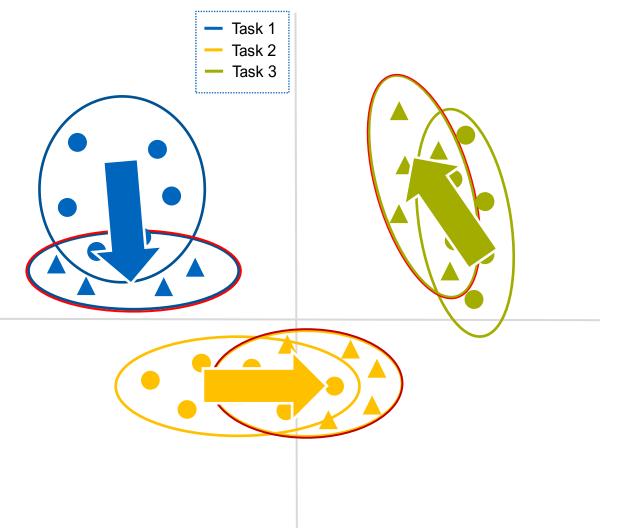


ТШП

Challenges

A training instance may need to cover multiple test instances

Meaningful directions differ from one task to another



ТШ

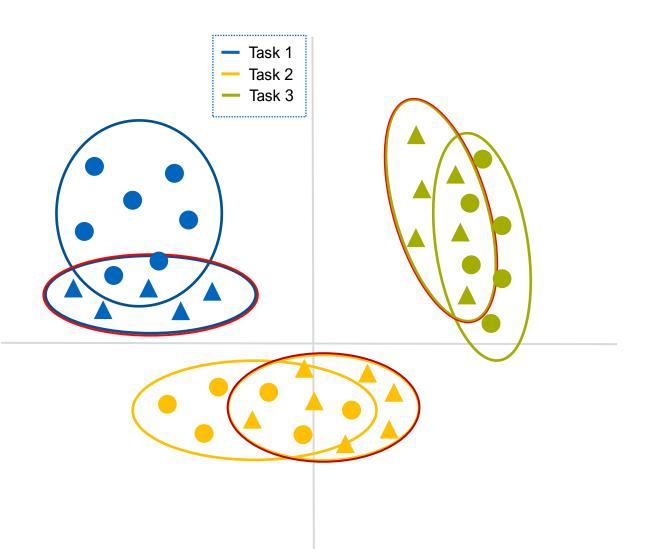
Challenges

A training instance may need to cover multiple test instances

→ Noise Distribution

Meaningful directions differ from one task to another

→ Input-Dependent Noise



ТШ

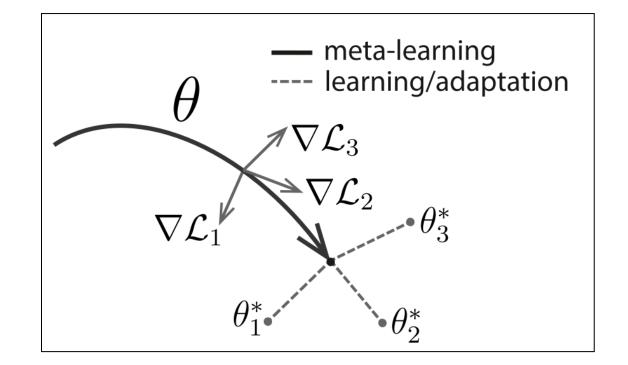
Meta Learning Framework - MAML

Properties / Limitations of MAML

knowledge transfer via learned parameter $\boldsymbol{\theta}$

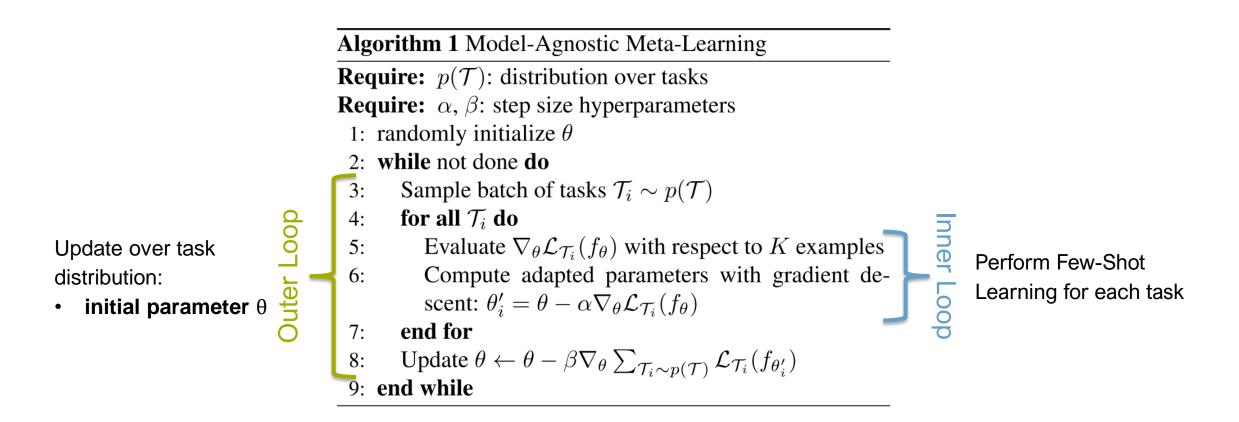
parameter θ only implicitly captures test distributions

→ Misses out on important knowledge about task distribution

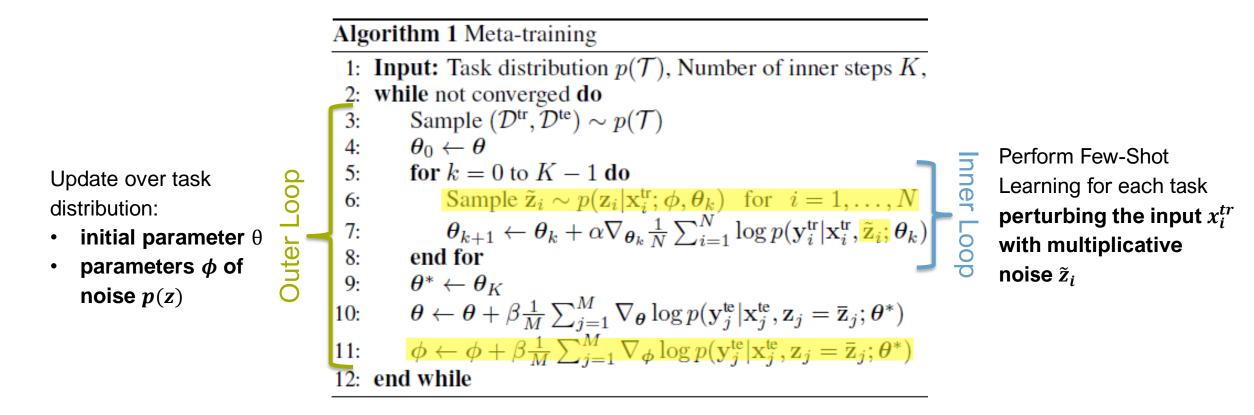


ТШП

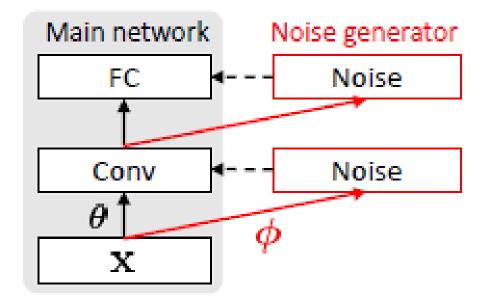
Recap: MAML



Meta Dropout



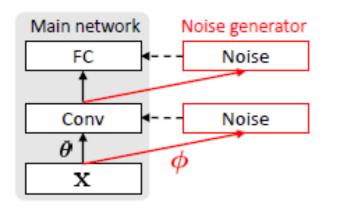
Meta-Dropout: Model Architecture



πл

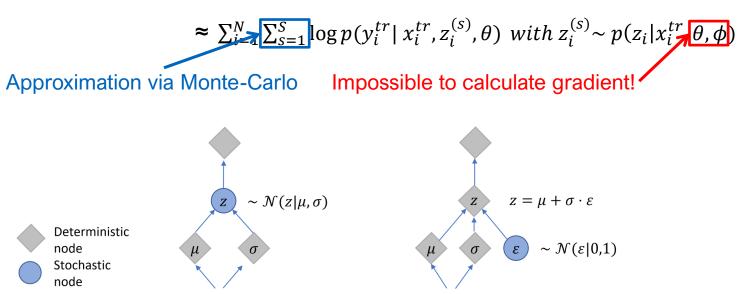
Meta-Dropout: Implementation Detail

Model Architecture



Reparameterization Trick

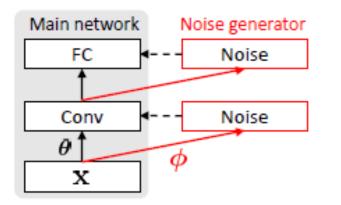
 $\log p(Y_i^{tr} | X_i^{tr}, \theta, \phi) \ge \sum_{i=1}^N \mathbb{E}_{z_i \sim p(z_i | x_i^{tr}, \theta, \phi)} [\log p(y_i^{tr} | x_i^{tr}, \theta, \phi)]$



ТШ

Meta-Dropout: Implementation Detail

Model Architecture



Form of the Noise: $p(y_i^{tr} | x_i^{tr}, z_i^{(s)}, \theta)$ with $z_i^{(s)} \sim p(z_i | x_i^{tr}, \theta, \phi)$

Additive Noise $h^{(0)} = x_i^{tr}$ $z_i^{(s)} \sim N(z^{(l)}|0, \lambda^2 diag(\sigma^2))$ $h^{(l)} = ReLU(f^{(l)}(h^{(l-1)}) + z^{(l)})$ $z_i^{(s)} \sim N(z^{(l)}|0, \lambda^2 diag(\sigma^2))$

Multiplicative Noise

$$\boldsymbol{h}^{(0)} = \boldsymbol{x}_i^{tr} \qquad \boldsymbol{z}^{(l)} = Softplus(\boldsymbol{a}^{(l)})$$
$$\boldsymbol{h}^{(l)} = ReLU(f^{(l)}(\boldsymbol{h}^{(l-1)}) \circ \boldsymbol{z}^{(l)}) \qquad \boldsymbol{a}^{(l)} \sim N(\boldsymbol{a}^{(l)} | \boldsymbol{\mu}^{(l)}, \mathbf{I})$$

ТШ

Experiments - Datasets

Omniglot

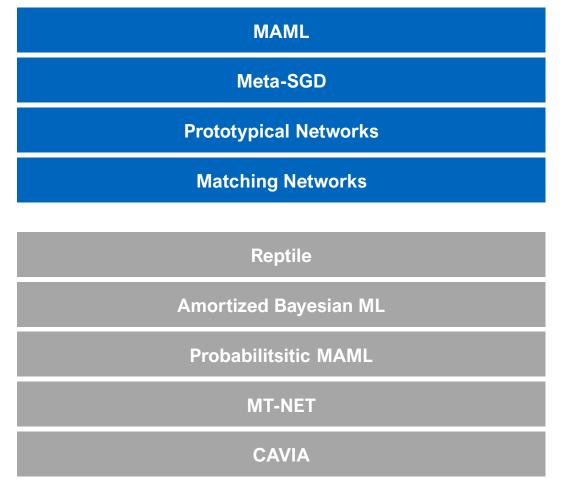
→ 20 instances of ~1600 characters from 50 alphabets

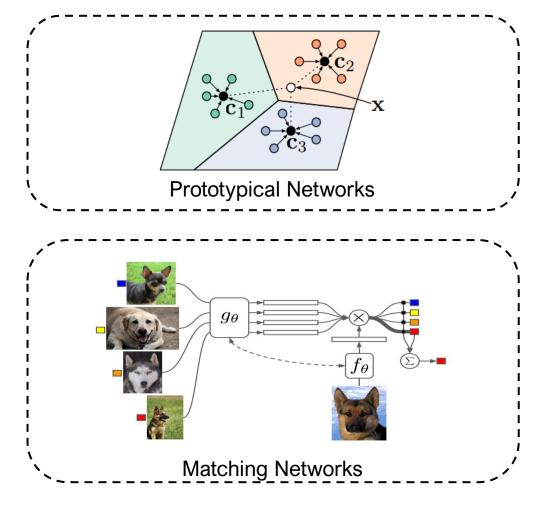
minilmageNET

Small version of ImageNET → 100 classes with 600 samples

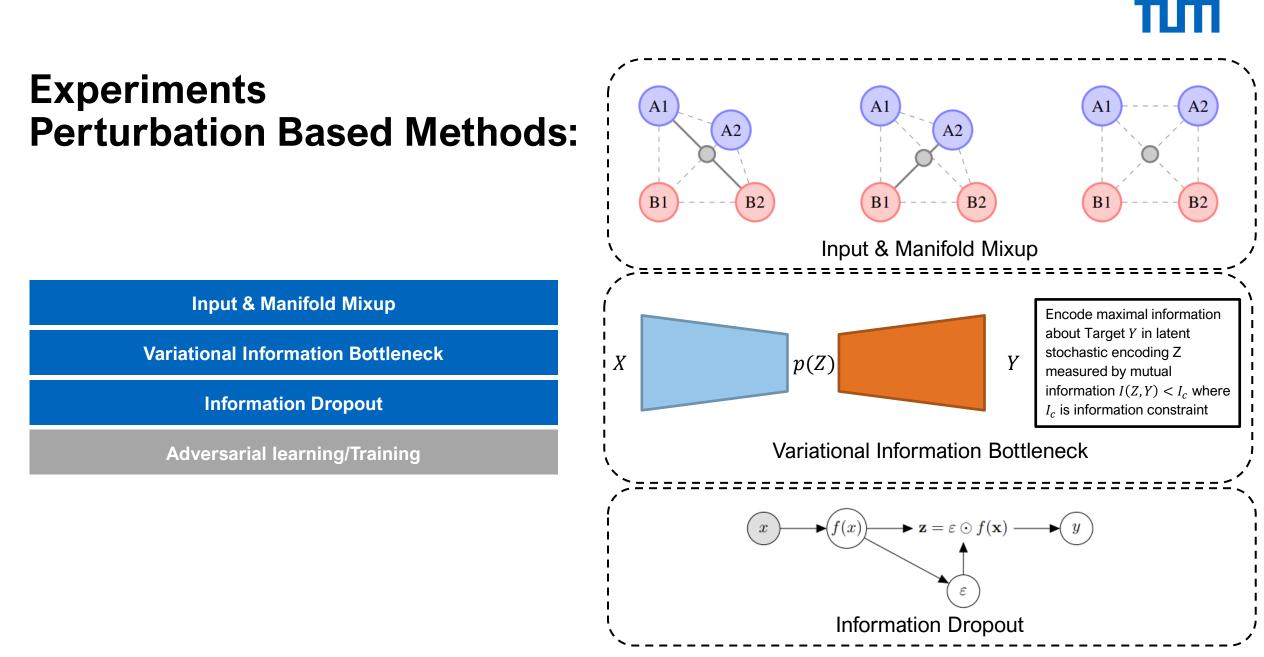
ТШП

Experiments Meta-Learning Frameworks





Tobias Schmidt | Recent Trends in Automated Machine Learning (AutoML) (IN2107, IN4954)



Few-shot classification performance

	Omniglot 20-way		miniImageNet 5-way	
Models	1-shot	5-shot	1-shot	5-shot
Meta-Learning LSTM (Ravi & Larochelle, 2017)	-	-	43.44 ± 0.77	60.60±0.71
Matching Networks (Vinyals et al., 2016)	93.8	98.7	43.56 ± 0.84	55.31 ± 0.73
Prototypical Networks (Snell et al., 2017)	95.4	98.7	46.14 ± 0.77	65.77 ± 0.70
Prototypical Networks (Snell et al., 2017) (Higher way)	96.0	98.9	49.42 ± 0.78	68.20±0.66
MAML (our reproduction)	95.23±0.17	98.38 ± 0.07	49.58 ± 0.65	64.55 ± 0.52
Meta-SGD (our reproduction)	96.16±0.14	98.54 ± 0.07	48.30 ± 0.64	65.55 ± 0.56
Reptile (Nichol et al., 2018)	89.43 ± 0.14	97.12 ± 0.32	$49.97{\scriptstyle\pm0.32}$	65.99 ± 0.58
Amortized Bayesian ML (Ravi & Beatson, 2019)	-	-	45.00 ± 0.60	-
Probabilistic MAML (Finn et al., 2018)	-	-	50.13±1.86	-
MT-Net (Lee & Choi, 2018)	96.2 ± 0.4	-	51.70 ± 1.84	-
CAVIA (512) (Zintgraf et al., 2019)	-	-	51.82 ± 0.65	$65.85{\scriptstyle \pm 0.55}$
MAML + Meta-dropout	96.63±0.13	98.73±0.06	51.93 ± 0.67	67.42 ± 0.52
Meta-SGD + Meta-dropout	97.02±0.13	99.05±0.05	$50.87{\scriptstyle\pm0.63}$	$65.55{\scriptstyle \pm 0.57}$

Few-shot classification performance

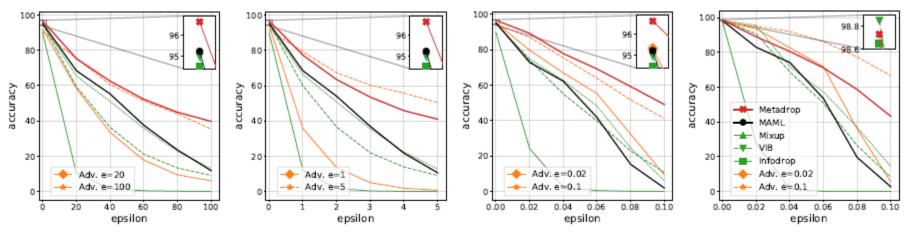
Models	Noise	Hyper-	Omniglo	Omniglot 20-way		miniImageNet 5-way	
(MAML +)	Туре	parameter	1-shot	5-shot	1-shot	5-shot	
No perturbation		None	95.23 ± 0.17	98.38 ± 0.07	49.58 ± 0.65	64.55 ± 0.52	
Input & Manifold Mixup		$\gamma = 0.2$	89.78 ± 0.25	97.86 ± 0.08	48.62 ± 0.66	63.86 ± 0.53	
(Zhang et al., 2017)	Pairwise	$\gamma = 1$	87.00 ± 0.28	97.27 ± 0.10	48.24 ± 0.62	62.32 ± 0.54	
(Verma et al., 2019)		$\gamma = 2$	$87.26{\scriptstyle\pm0.28}$	97.14 ± 0.17	48.42 ± 0.64	$62.56{\scriptstyle \pm 0.55}$	
Variational		$\beta = 10^{-5}$	$92.09{\scriptstyle\pm0.22}$	98.85 ± 0.07	48.12 ± 0.65	64.78 ± 0.54	
Information Bottleneck	Add.	$\beta = 10^{-4}$	93.01 ± 0.20	$98.80{\scriptstyle \pm 0.07}$	$46.75{\scriptstyle\pm0.63}$	$64.07{\scriptstyle\pm0.54}$	
(Alemi et al., 2017)		$\beta = 10^{-3}$	$94.98{\scriptstyle \pm 0.16}$	$98.75{\scriptstyle\pm0.07}$	47.59 ± 0.60	$63.30{\scriptstyle\pm0.53}$	
Information Dropout		$\beta = 10^{-5}$	$94.49{\scriptstyle\pm0.17}$	98.50 ± 0.07	50.36 ± 0.68	65.91 ± 0.55	
(ReLU ver.)	Mult.	$\beta = 10^{-4}$	$94.36{\scriptstyle \pm 0.17}$	$98.53{\scriptstyle\pm0.07}$	$49.14{\scriptstyle\pm0.63}$	$64.96{\scriptstyle \pm 0.54}$	
(Achille & Soatto, 2018)		$\beta = 10^{-3}$	$94.28{\scriptstyle\pm0.17}$	$98.65{\scriptstyle\pm0.07}$	$43.78{\scriptstyle\pm0.61}$	$63.36{\scriptstyle\pm0.56}$	
Meta-dropout	Add.	0.1	96.55 ± 0.14	$99.04{\scriptstyle\pm0.05}$	50.25 ± 0.66	66.78 ± 0.53	
(See Appendix B for Add.)	Mult.	None	$96.63{\scriptstyle\pm0.13}$	$98.73{\scriptstyle\pm0.06}$	$51.93{\scriptstyle \pm 0.67}$	$67.42{\scriptstyle \pm 0.52}$	

Ablation study on the noise type

Models (MAML+)	Rand. samp.	Learn. mult.	Input dep.	Omniglot 20-way 1-shot 5-shot		miniImageNet 5-way 1-shot 5-shot	
	samp.	mun.					
None	X	Х	X	95.23±0.17	98.38±0.07	49.58 ± 0.65	$64.55{\scriptstyle\pm 0.52}$
Fixed Gaussian (\checkmark)	0	Х	Х	95.44±0.17	98.99±0.06	49.39 ± 0.63	66.84 ± 0.54
Weight Gaussian	0	Х	Х	94.32 ± 0.18	98.35 ± 0.07	49.37 ± 0.64	64.78 ± 0.54
Independent Gaussian	0	0	Х	94.36±0.18	98.26 ± 0.08	50.31 ± 0.64	66.97 ± 0.54
MAML + More param	Х	0	0	95.83±0.15	97.85±0.09	50.63 ± 0.64	65.20±0.51
Determ. Meta-drop. (✓)	Х	0	0	95.99 ± 0.14	97.78 ± 0.09	50.75 ± 0.63	65.62 ± 0.53
Meta-drop. w/ learned var.	0	0	0	95.98 ± 0.15	$98.87{\scriptstyle\pm0.06}$	50.93 ± 0.68	66.15 ± 0.56
Meta-dropout	0	0	0	96.63±0.13	98.73±0.06	51.93±0.67	67.42 ± 0.52

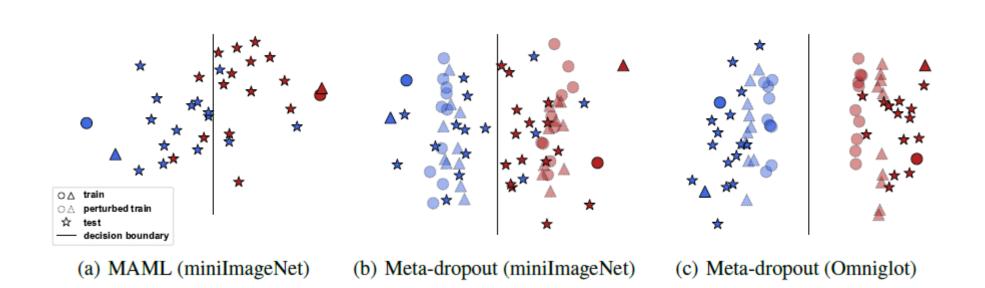
ТШП

Adversarial Robustness



(a) Omniglot 1-shot (ℓ_1) (b) Omniglot 1-shot (ℓ_2) (c) Omniglot 1-shot (ℓ_{∞}) (d) Omniglot 5-shot (ℓ_{∞})

Qualitative study on generalization capability



Conclusion

Main Claim:

"Using Meta-Dropout to perturb the latent features of training examples in a Meta-Learning Framework improves generalization capabilities"

Improves:

- Decision boundary
- Adversarial robustness
- Few-Shot learning performance
- Hypothesis supported by experiments across large variate of baseline models
- Code available

- Evaluated on only two datasets
- More Shots / More Ways
- Relatively small performance increase
- Discrepancy in the results
- Generalization across datasets domains not discussed
- No Computational Cost Reported
- Comparison noise \phi for every layer or shared for all

References

[1] Hae Beom Lee, Taewook Nam, Eunho Yang, and Sung Ju Hwang. Meta dropout: Learning to perturb latent features for generalization. In ICLR, 2020

[2] Alessandro Achille and Stefano Soatto. Information Dropout: Learning Optimal Representations Through Noisy Computation. In PAMI, 2018.

[3] Alex Alemi, Ian Fischer, Josh Dillon, and Kevin Murphy. Deep variational information bottleneck. In ICLR, 2017.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017.

[5] D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the Local Reparameterization Trick. In NIPS, 2015
[6] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few shot learning. arXiv preprint arXiv:1707.09835, 2017.

[7] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS, 2017.

[8] Oriol Vinyals, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching networks for one shot learning. In NIPS, 2016.