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Motivation – Generalization
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Motivation – Generalization

Common Solutions - Bias/Variance Trade-Off

Appropriate Priors

• Image Convolutions 

(Shift-Invariance)

• Graph Convolutions 

(Permutation-Invariance)

• …

Regularization

• Reducing model capacity

• Reducing information 

from inputs

• Smoothing loss surface

• Multi-task training

• Meta-Learning
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Motivation – Train/Test Distribution Mismatch

Common Solutions - Bias/Variance Trade-Off
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• Image Convolutions 

(Shift-Invariance)
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Motivation – Train/Test Distribution Mismatch

Alternative Solutions - Simulate Test Samples 

Data augmentations Mixup

Train

Test
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Motivation – Train/Test Distribution Mismatch
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Idea: Learn to perturb the data for better generalization
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Challenges 

Task 1

Task 2

Task 3

Meaningful directions differ from one 

task to another

A training instance may need to 

cover multiple test instances
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Challenges 

Task 1

Task 2

Task 3

Meaningful directions differ from one 

task to another

A training instance may need to 

cover multiple test instances

→ Noise Distribution 

→ Input-Dependent Noise
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Meta Learning Framework - MAML

Properties / Limitations of MAML

knowledge transfer via learned parameter 𝜽

parameter 𝜽 only implicitly captures test 

distributions 

→ Misses out on important knowledge 

about task distribution
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Recap: MAML
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Learning for each task

Update over task 

distribution:

• initial parameter θ
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Meta Dropout
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Update over task 

distribution:

• initial parameter θ

• parameters 𝝓 of

noise 𝒑(𝒛)

Perform Few-Shot 

Learning for each task 

perturbing the input 𝒙𝒊
𝒕𝒓

with multiplicative 

noise ෤𝒛𝒊
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Meta-Dropout: Model Architecture
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Meta-Dropout: Implementation Detail

Model Architecture Reparameterization Trick

log 𝑝(𝑌𝑖
𝑡𝑟| 𝑋𝑖

𝑡𝑟, 𝜃, 𝜙) ≥ σ𝑖=1
𝑁 𝔼𝑧𝑖~ 𝑝 𝑧𝑖 𝑥𝑖

𝑡𝑟,𝜃,𝜙)[log 𝑝(𝑦𝑖
𝑡𝑟| 𝑥𝑖

𝑡𝑟 , 𝜃, 𝜙)]

≈ σ𝑖=1
𝑁 σ𝑠=1

𝑆 log 𝑝(𝑦𝑖
𝑡𝑟| 𝑥𝑖

𝑡𝑟, 𝑧𝑖
(𝑠)
, 𝜃) 𝑤𝑖𝑡ℎ 𝑧𝑖

(𝑠)
~ 𝑝 𝑧𝑖 𝑥𝑖

𝑡𝑟 , 𝜃, 𝜙)

Impossible to calculate gradient! Approximation via Monte-Carlo
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Meta-Dropout: Implementation Detail

Model Architecture Form of the Noise: 𝑝 𝒚𝑖
𝑡𝑟| 𝒙𝑖

𝑡𝑟 , 𝒛𝑖
𝑠
, 𝜽 𝑤𝑖𝑡ℎ 𝒛𝑖

(𝑠)
~ 𝑝 𝒛𝑖 𝒙𝑖

𝑡𝑟 , 𝜽, 𝝓)

Additive Noise

Multiplicative Noise

𝒉(0) = 𝒙𝑖
𝑡𝑟

𝒉(𝑙) = 𝑅𝑒𝐿𝑈 𝑓 𝑙 𝒉 𝑙−1 ∘ 𝒛(𝑙)

𝒉(0) = 𝒙𝑖
𝑡𝑟

𝒉(𝑙) = 𝑅𝑒𝐿𝑈 𝑓 𝑙 𝒉 𝑙−1 + 𝒛(𝑙)

𝒛(𝑙) = 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝒂 𝑙 )

𝒂(𝑙)~ 𝑁 𝒂(𝑙) 𝝁(𝑙), I)

𝒛𝑖
(𝑠)
~ 𝑁 𝒛(𝑙) 0, 𝜆2𝑑𝑖𝑎𝑔 𝜎2 )
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Experiments - Datasets

Omniglot miniImageNET

Handwritten character classification

→ 20 instances of ~1600 characters from 50 alphabets

Small version of ImageNET

→ 100 classes with 600 samples
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Experiments 
Meta-Learning Frameworks

Prototypical Networks

Matching Networks

MAML

Meta-SGD

Prototypical Networks

Matching Networks

Reptile

Amortized Bayesian ML

Probabilitsitic MAML

MT-NET

CAVIA
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Experiments
Perturbation Based Methods:

Input & Manifold Mixup

Variational Information Bottleneck

𝑝(𝑍)𝑋 𝑌

Encode maximal information 

about Target 𝑌 in latent 

stochastic encoding Z 

measured by mutual 

information 𝐼 𝑍, 𝑌 < 𝐼𝑐 where 

𝐼𝑐 is information constraint

Information Dropout

Input & Manifold Mixup

Variational Information Bottleneck

Information Dropout

Adversarial learning/Training
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Few-shot classification performance
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Few-shot classification performance
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Ablation study on the noise type
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Adversarial Robustness
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Qualitative study on generalization capability



28

Tobias Schmidt | Recent Trends in Automated Machine Learning (AutoML) (IN2107, IN4954)

Conclusion 

Main Claim: 

“Using Meta-Dropout to perturb the latent features of training examples in a Meta-Learning 

Framework improves generalization capabilities”

Improves: 

• Decision boundary

• Adversarial robustness

• Few-Shot learning performance

• Hypothesis supported by experiments across 

large variate of baseline models

• Code available  

• Evaluated on only two datasets

• More Shots / More Ways

• Relatively small performance increase

• Discrepancy in the results

• Generalization across datasets domains not 

discussed

• No Computational Cost Reported

• Comparison noise \phi for every layer or shared 

for all
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