Learning What Data to Learn

Recent Trends in Automated Machine Learning (AutoML) (IN2107, IN4954) Technische Universität München

Batuhan Erden

May 26th, 2021

An Adaptive Data Selection Strategy

- Curriculum Learning (CL), Bengio et al., 2009
- Self-paced Learning (SPL), Kumar et al., 2010

How do we **automatically and dynamically** allocate appropriate training data at different stages of machine learning?

An Adaptive Data Selection Strategy

Proposition: Two-fold intuitive principles!

The data selection strategy should be:

- General enough
- Forward-looking

The teacher-student framework

Figure credit: <u>https://rlcurriculum.github.io/</u>

Neural Data Filter (NDF)

- Deep Reinforcement Learning to determine whether/how to filter the given mini-batch of training data.
- The SGD training for the base Machine Learning model is casted into a Markov Decision Process (MDP).

The structure of SGD accompanied with NDF

NDF: Definition

SGD-MDP: $< s, a, \mathcal{P}, r, \gamma >$

- s is the state, $s_t = (D_t, \mathcal{W}_t)$.
- *a* is the action space.
 - For data filtration task, we have: $a = \{a_m\}_{m=1}^M \in \{0,1\}^M$.
- $\mathcal{P}^{a}_{ss'} = P(s'|s,a)$ is the state transition probability.
- r = r(s, a) is the reward.
- $\gamma \in [0,1]$ is the discount factor.

NDF: Definition

 $\textbf{SGD-MDP:} < s, a, \mathcal{P}, r, \gamma >$

- NDF samples the action by its policy function $A = P_{\Theta}(a|s)$ with parameters Θ to be learnt.
- The policy A can be any binary classification model, such as logistic regression.

NDF: State Features

- The aim of designing state feature vector is to *effectively and efficiently* represent SGD-MDP state.
- Adopt 3 categories features to compose f(s):
 - Data features
 - Base model features
 - Features to represent the combination of both data and model

Algorithm 1: SGD Training with NDF

Algorithm 1 SGD Training with Neural Data Filter.

Input: Training data *D*.

- 1. Randomly sample a subset of NDF training data D' from D.
- 2. Optimize NDF policy network $A(s; \Theta)$ based on D' by policy gradient (details in Algorithm 2).
- 3. Apply $A(s; \Theta)$ to full dataset D to train the base machine learning model by SGD.

Output: The base machine learning model.

Training Algorithm for NDF Policy

We aim to optimize the following expected reward:

 $J(\Theta) = E_{P_{\Theta}(a|s)}[R(s, a)]$ $\nabla_{\Theta} = \sum_{t=1}^{T} E_{P_{\Theta}(a_{1:T}|s)}[\nabla_{\Theta} \log P(a_{t}|s_{t})R(s_{t}, a_{t})]$ Which is empirically estimated as: $\sum_{t=1}^{T} \nabla_{\Theta} \log P(a_{t}|s_{t})v_{t}.$

Algorithm 2: Train NDF policy

Algorithm 2 Train NDF policy.

Input: Training data D'. Episode number L. Mini-batch size M. Discount factor $\gamma \in [0, 1]$. Randomly split D' into two disjoint subsets: D'_{train} and D'_{dev} .

Initialize NDF data filtration policy $A(s, a; \Theta)$, i.e., $P_{\Theta}(a|s)$.

for each episode $l = 1, 2, \dots, L$ do Initialize the base machine learning model. Shuffle D'_{train} to get the mini-batches sequence $\{D_1, D_2, \dots\}$. T = 0. while stopping criteria is not met do T = T + 1. Sample data filtration action for each data instance in $D_T = \{d_1, \dots, d_M\}$: $a = \{a_m\}_{m=1}^M, a_m \propto P_{\Theta}(a|s_m), s_m$ is the state corresponding to d_m . Update base machine learning model by Gradient Descent based on the selected data in D_T . Receive reward r_T computed on D'_{dev} . end while for $t = 1, \dots, T$ do

Compute cumulative reward $v_t = r_t + \gamma r_{t+1} + \cdots + \gamma^{T-t} r_T$.

$$\Theta \leftarrow \Theta + \alpha v_t \sum_m \frac{\partial \log P_\Theta(a_m | s_m)}{\partial \Theta} \qquad (5)$$

end for end for

ТЛП

The experiments

- Unfiltered SGD
- Self-paced Learning (SPL)
- NDF

$$\Theta \leftarrow \Theta + \alpha (r_t - b_l) \sum_m \frac{\partial \log P_{\Theta}(a|s_m)}{\partial \Theta}$$

, with the reward baseline b_l for episode l, computed as $b_l = 0.8b_{l-1}+0.2r_l, b_0 = 0$. and v_t is computed as $v_t = r_l$.

RandDrop

MLP for MNIST

- 60k training and 10k testing images
- **Optimizer:** Momentum-SGD (Mini-batch size = 20).
- Layer structure: A 3-layer feedforward neural network with layer size 784 x 500 x 10
- Loss function: Cross-entropy
- L: 500 Episodes
- Early Stopping: Based on validation set accuracy

MLP for MNIST

MLP for MNIST

CNN for Cifar10

- 60k RGB images of size 32 x 32 categorized into 10 classes.
- 50k training images and 10k test images.
- Data Augmentation: Padding 4 pixels to each side and randomly sampling a 32 x 32 crop.
- **ResNet** is adopted.
- **Optimizer:** Momentum-SGD (Mini-batch size = 128).
- Learning Rate: Initially set to 0.1, and multiplied by a factor of 0.1 after the 32k-th and 48kth model update.
- L: 100.

CNN for Cifar10

CNN for Cifar10

RNN for IMDB sentiment classification

- 50k movie review comments with positive/negative sentiment labels
- 25k training set and 25k test set.
- The size of word embedding in RNN is 256.
- The size of hidden state of RNN is 512.
- Mini-batch size is 16.
- L: 200.

RNN for IMDB sentiment classification

RNN for IMDB sentiment classification

Pros

- A good data selection mechanism can effectively accelerate model convergence.
- Different tasks and datasets may favor different data selection policies.
- Not sensitive to the setting of hyper-parameters.

Cons

- For some problems, NDF seems to be indifferent to different setting of hyper-parameters.
- The data selection (hard or easy) matters in some problems.
- Still need to test the algorithm on different scenarios.

ТШΠ

Questions???

