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An Adaptive Data Selection Strategy

e Curriculum Learning (CL), Bengio et al., 2009
» Self-paced Learning (SPL), Kumar et al., 2010

How do we automatically and dynamically allocate appropriate training data at different

stages of machine learning?
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An Adaptive Data Selection Strategy

Proposition: Two-fold intuitive principles!

The data selection strategy should be:
— General enough
— Forward-looking
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The teacher-student framework

propose a problem

Teacher

Observations

solved the problem?

Figure credit: https://rlcurriculum.github.io/
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Neural Data Filter (NDF)

» Deep Reinforcement Learning to determine whether/how to filter the given mini-batch of

training data.
* The SGD training for the base Machine Learning model is casted into a Markov Decision

Process (MDP).
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T
The structure of SGD accompanied with NDF
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NDF: Definition

sGD-MDP: < §,a, P,r,y >

S isthe state, sy = (D¢, Wy).

A is the action space.
« For data filtration task, we have: @ = {am}ﬂle S {O,I}M.

P2, = P(s'|s,a) is the state transition probability.

r = T(S,(L) is the reward.

v € [0, 1] is the discount factor.
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NDF: Definition

sSGD-MDP: < S,a, P,r,vy >
- NDF samples the action by its policy function A = Pg(al|s) with parameters © to be

learnt.

« The policy A can be any binary classification model, such as logistic regression.
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NDF: State Features

« The aim of designing state feature vector is to effectively and efficiently represent SGD-
MDP state.

- Adopt 3 categories features to compose f(s):

« Data features
« Base model features
» Features to represent the combination of both data and model
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Algorithm 1: SGD Training with NDF

Algorithm 1 SGD Training with Neural Data Filter.

Input: Training data D.

1. Randomly sample a subset of NDF training data D’
from D.

2. Optimize NDF policy network A(s; ©) based on D’
by policy gradient (details in Algorithm 2).

3. Apply A(s; ©) to full dataset D to train the base ma-
chine learning model by SGD.

Output: The base machine learning model.
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Training Algorithm for NDF Policy

We aim to optimize the following expected reward:

J(©) = Epg(a)s)R(s,a)]

.

Vo = ZEP@(Gl:Tls) [V@ logp(at|5t)R(St?at)]

t=1

Which is empirically estimated as: * Tt

Po(als):vp =1 +yrs1+ -+ T

T
ZV@ log P(a¢|st)v;.

t=1
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Algorithm 2: Train NDF policy

for each episode | = 1,2,--- , L do

Algorithm 2 Train NDF policy.
g Py Initialize the base machine learning model.

Input: Training data D’. Episode number L. Mini-batch

size M. Discount factor € [0, 1]. Shuffle Dj . to get the mini-batches sequence
Randomly split D' into two disjoint subsets: D, . and {D1,Ds,--- }.
D)., T =0.
Initialize NDF data filtration policy A(s,a;0), ie., while stopping criteria is not met do
Pg(als). T=T+1.
Sample data filtration action for each data instance
in Dy = {dy,-- ,dy}: a = {am}M_|, am

Pg(als.y,), s, is the state corresponding to d,,,.
Update base machine learning model by Gradient
Descent based on the selected data in D

Receive reward rp computed on D’

dewv®
end while
fort=1.---.T do
Compute cumulative reward v; = r;+ri 1+ -+

Output: The NDF policy A(s, a;9).

ATt
a IOE Pl:_:-) (ﬁ-m |5'm)
e e v 5
— O + av; ; 56 (3)
end for
end for
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The experiments

Unfiltered SGD
Self-paced Learning (SPL)
NDF

6 € 6+ a(r — b3 218 Po(als,) » With the reward baseline b; for episode [ ,
= 9 +alr: — O E e .
o0 computed as b; = 0.8b;_1+0.2r;,bg = 0.

and v; is computed as vy = 17 .

RandDrop
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MLP for MNIST

» 60k training and 10k testing images

* Optimizer: Momentum-SGD (Mini-batch size = 20).

« Layer structure: A 3-layer feedforward neural network with layer size 784 x 500 x 10
* Loss function: Cross-entropy

« L: 500 Episodes

« Early Stopping: Based on validation set accuracy
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MLP for MNIST
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MLP for MNIST
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CNN for Cifarl0

« 60k RGB images of size 32 x 32 categorized into 10 classes.

« 50k training images and 10k test images.

« Data Augmentation: Padding 4 pixels to each side and randomly sampling a 32 x 32 crop.
 ResNet is adopted.

* Optimizer: Momentum-SGD (Mini-batch size = 128).

« Learning Rate: Initially set to 0.1, and multiplied by a factor of 0.1 after the 32k-th and 48k-
th model update.

L: 100.
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CNN for Cifarl0
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CNN for Cifarl0
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RNN for IMDB sentiment classification

* 50k movie review comments with positive/negative sentiment labels
« 25k training set and 25k test set.

» The size of word embedding in RNN is 256.

* The size of hidden state of RNN is 512.

« Mini-batch size is 16.

L: 200.
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RNN for IMDB sentiment classification
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RNN for IMDB sentiment classification
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Pros

» A good data selection mechanism can effectively accelerate model convergence.
» Different tasks and datasets may favor different data selection policies.

* Not sensitive to the setting of hyper-parameters.
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cons

* For some problems, NDF seems to be indifferent to different setting of hyper-parameters.
» The data selection (hard or easy) matters in some problems.

« Still need to test the algorithm on different scenarios.
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Questions???



