
Learning to learn by gradient descent
by gradient descent

Aleksandr Zuev
TUM SS21 [IN2107]
Recent trends in Automated Machine Learning
16.06.2021

● The move from hand-crafted
features to learning features
was very successful

MNIST Handwritten Digits Classification using a Convolutional Neural Network (CNN) | by Krut Patel | Towards Data Science
Adam: A Method for Stochastic Optimization

Idea

● Why to design optimization
algorithms by hand?

2

https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9
https://arxiv.org/abs/1412.6980

In ML setup it is mostly a problem of optimizing an objective function f(θ) defined
over some domain θ ∈ Θ, and our goal is to find a minimizer:

Optimization problem

The standard approach results in some sort of gradient descent with the
following update rule:

3

No free lunch

No Free Lunch Theorems for Optimization [Wolpert and Macready, 1997] show
that in the setting of combinatorial optimization, no algorithm is able to do better
than a random strategy in expectation.

This suggests that specialization to a subclass of problems is in fact the only way
that improved performance can be achieved in general.

4

https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf

We have the same optimization problem and our goal is to find a minimizer:

Learned update rule

But now, let’s learn update rule g specified by its own set of parameters ɸ:

5

Transfer learning and generalization

Goal: develop a procedure for constructing a
learning algorithm which performs well on a
particular class of optimization problems.

Casting construction of a learning algorithm as a
learning problem itself allows to specify a class
of optimization problems by examples.

All optimization problems

Particular class

Opt. Problem 1 Opt. Problem N+1

Opt. Problem M
Opt. Problem 2

Opt. Problem N

Opt. Problem 1
Opt. Problem 2
Opt. Problem N

Learning
optimizer g g

Using
optimizer g for

Opt. Problem N+1
Opt. Problem M

6

Learning to learn with RNNs

Final parameters: optimizer parameters ɸ and the optimizee f:

Loss, given the distribution of functions f:

Using m – RNN, , short notation
and depending on trajectory of optimization for some horizon T:

7

Minimizing loss

Gradient descent on with the assumption of

(gradients along the dashed lines are dropped)

8

Coordinatewise LSTM optimizer

We want to optimize tens of thousands of
parameters → fully connected RNN is not
feasible

We will use optimizer RNN which operates
coordinatewise (similar to Adam)

9

This results in:

● small network
● invariant to the order of parameters

All LSTMs have:

● shared parameters
● separate hidden states

Preprocessing and postprocessing

Optimizer inputs and outputs can have very different magnitudes

In practice rescaling inputs and outputs using suitable constants is sufficient

10

Experiments

Optimizer RNN
2-layer LSTM, 20 hidden units,

trained on 100 epochs using Adam, learning rate found by
random search

Reused from MNIST
←

Optimizee for 10x10 W matrices
Cross entropy error of

NN, 20 hidden units, sigmoid
Reused from MNIST

←
11

Generalization to different architectures

Optimizer RNN
Reused same from MNIST

2-layer LSTM, 20 hidden units,
trained on 100 epochs using Adam, learning rate found by random search

Optimizee
Cross entropy error of
NN, 40 hidden units,

sigmoid

Cross entropy error of
NN, 20+20 hidden units,

sigmoid

Cross entropy error of
NN, 20 hidden units,

ReLU 12

Generalization to different architectures

Optimizer RNN
Reused same from MNIST

2-layer LSTM, 20 hidden units,
trained on 100 epochs using Adam, learning rate found by random search

Optimizee
Cross entropy error of

NN, hidden units and number of hidden layers systematically vary,
sigmoid 13

Convolutional network on CIFAR-10

Optimizer
RNN

For fully-connected layer: separate LSTM trained on train set, LSTM-sub trained on held-out set

For convolutional layers: separate LSTM

Optimizee Cross entropy error of
3x(Conv2d → MaxPool) → Fully-connected(32), ReLU, BatchNorm used

Dataset All labels 5 of 10 labels 2 of 10 labels 14

Neural art

Each content and style image pair results to a different optimization problem

content image styled image style image content image styled image style image

15

Neural art

Same optimizer,
trained on 1 fixed style image and 1800 content images (64x64) from ImageNet

Same style image,
same resolution (64x64)

Different style image,
double resolution (128x128) 16

Conclusion

● Casting the design of optimization algorithms as a learning problem
● Learned optimizers perform comparably well
● Some degree of generalization

(trained on 12,888, generalized to 49,152 parameters in Neural art)

17

– Problematic to generalize to different activation functions (Sigmoid, ReLU)
and layers (Conv2d, Fully-connected)

– Scalability
– Proof of concept

Thank you for attention!
If you have any questions feel free to ask

