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AUGMENTATION
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PROBLEM DEFINITION
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As these methods 

are designed 

manually,

they require expert 

knowledge and time.

The best 

augmentation

methods needs to be 

designed manually 

and they are dataset-

specific

«For instance, on ImageNet, the data augmentation approach is introduced in 2012, remains 

the standard with small changes.»
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RELATED WORKS
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IMPLEMENTATION

SEARCH ALGORITHM

• A controller - a recurrent neural 

network,

• A training algorithm - Proximal Policy 

Optimization algorithm 

SEARCH SPACE

• A policy consists of 5 sub-policies with two image operations 

to be applied in sequence. 

• Each operation is with two hyperparameters:

 the probability of applying the operation, 

 the magnitude of the operation.



SEARCH ALGORITHM
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A controller RNN predicts an augmentation policy (can be 
viewed as a list of actions to design an architecture for a 
child network) from the search space.

These actions applied to the dataset (environment) and a
child network is trained until the convergence, achieving 
accuracy R.

Autoaugment use this accuracy R as the reward signal 
with the policy gradient method (since the reward signal R 
is non-differentiable) to update the controller to generate 
better policies in next iteration. 
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Augmentation Example



Operations 
PIL + Cutout [12] and SamplePairing
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Results

«The results show that a direct application of AutoAugment improves significantly the baseline models and
produces state-of-the-art accuracies on these challenging datasets.»



AutoAugment vs. Related Works



Results for CIFAR-10 and ImageNet



AutoAugment-Transfer
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Transfer Results

«Policies learned on data distributions closest to the target yield the best performance»



Strengths and Weaknesses

Requires high

computational power

Long computation time

Dataset specific

AutoAugment gives the 

best results

Does not require

expert knowledge

Improvement in 

accuracies

Transferable – does

not overfit to a 

dataset

NEGATIVE POSSITIVE
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