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PROBLEM DEFINITION

The best
augmentation
methods needs to be
designed manually
and they are dataset-
specific

As these methods
are designed
manually,

they require expert
knowledge and time.

«For instance, on ImageNet, the data augmentation approach is introduced in 2012, remains
the standard with small changes.»



Smart

Augmentation

Merges multiple
samples from
the same class
to produce

augmented data
(YL /.

-i:

'

RELATED WORKS

Bayesian

Approach

Generates data
based on the
distribution

learned from the
trainiqg set

Devries and

Taylor

Used simple
transformations in the
learned feature space

to

augment data

N/

GANSs - Ratner

Generate sequences
that describe data
augmentation
strategies

LY

~ ”
” ~




IMPLEMENTATION

SEARCH ALGORITHM

* A controller - a recurrent neural
network,

* A training algorithm - Proximal Policy
Optimization algorithm

SEARCH SPACE

* A policy consists of 5 sub-policies with two image operations
to be applied in sequence.

* Each operation is with two hyperparameters:
= the probability of applying the operation,
= the magnitude of the operation.



. . . Sample a strategy S
@ Acontroller RNN predicts an augmentation policy (can be (Operation type, probability

viewed as a list of actions to design an architecture for a and magnitude)
child network) from the search space.

@ These actions applied to the dataset (environment) and a i 3 el metwork
. 5 5 g . . raimn a | netwaor

child network is trained until the convergence, achieving The controller (RNN) with strategy S to get

accuracy R. validation accuracy R

Autoaugment use this accuracy R as the reward signal T

with the policy gradient method (since the reward signal R (Use R to undatew
is non-differentiable) to update the controller to generate k the: coniolier J
better policies in next iteration.




SEARCH SPACE
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Original Sub-policy | Sub-policy 2 Sub-policy 3 Sub-policy 4  Sub-policy 5

Batch 1

Batch 2

Batch 3

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 09.4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 0.4,8 AutoContrast, 0.8, 3 Equalize, 0.6,3 AutoContrast, 0.7, 3




PIL + Cutout [12] and SamplePairing

Operation Name Description Range of
magnitudes

ShearX(Y) Shear the image along the horizontal (vertical) axis with rate [-0.3,0.3]
magnitude.

TranslateX(Y) Translate the image in the horizontal (vertical) direction by [-150,150]
magnitude number of pixels.

Rotate Rotate the image magnitude degrees. [-30,30]

AutoContrast Maximize the the image contrast, by making the darkest pixel
black and lightest pixel white.

Invert Invert the pixels of the image.

Equalize Equalize the image histogram.

Solarize Invert all pixels above a threshold value of magnitude. [0,256]

Posterize Reduce the number of bits for each pixel to magnitude bits. [4.8]

Contrast Control the contrast of the image. A magnitude=0 gives a gray [0.1,1.9]
image, whereas magnitude=1 gives the original image.

Color Adjust the color balance of the image, in a manner similar to  [0.1,1.9]
the controls on a colour TV set. A magnitude=0 gives a black
& white image, whereas magnitude=1 gives the original image.

Brightness Adjust the brightness of the image. A magnitude=0 gives a  [0.1,1.9]
black image, whereas magnitude=1 gives the original image.

Sharpness Adjust the sharpness of the image. A magnitude=0 gives a  [0.1,1.9]
blurred image, whereas magnitude=1 gives the original image.

Cutout [12, 69] Set a random square patch of side-length magnitude pixels to  [0,60]
gray.

Sample Pairing [24, 62] Linearly add the image with another image (selected at ran- [0, 0.4]

dom from the same mini-batch) with weight magnitude, without
changing the label.




EXPERIMENT DETAILS

Reduced More Epochs Baseline

Datasets Pre-processing




Dataset Model Baseline Cutout[1?] AutoAugment
CIFAR-10 Wide-ResNet-28-10 [67] 3.9 3.1 2.6+0.1
Shake-Shake (26 2x32d) [17] 3.6 3.0 2.5+0.1
Shake-Shake (26 2x96d) [17] 2.9 2.6 2.0+0.1
Shake-Shake (26 2x112d) [17] 2.8 2.6 1.940.1
AmoebaNet-B (6,128) [4£] 3.0 2.1 1.840.1
PyramidNet+ShakeDrop [65] 2.7 2.3 1.5+0.1
Reduced CIFAR-10 Wide-ResNet-28-10 [67] 18.8 16.5 14.1+£0.3
Shake-Shake (26 2x96d) [17] 17.1 13.4 10.0 £ 0.2
CIFAR-100 Wide-ResNet-28-10 [67] 18.8 18.4 17.1£0.3
Shake-Shake (26 2x96d) [17] 17.1 16.0 14.3+0.2
PyramidNet+ShakeDrop [65] 14.0 12.2 10.7 £ 0.2
SVHN Wide-ResNet-28-10 [67] 1.5 1.3 1.1
Shake-Shake (26 2x96d) [17] 1.4 1.2 1.0
Reduced SVHN Wide-ResNet-28-10 [67] 13.2 32.5 3.2
Shake-Shake (26 2x96d) [17] 12.3 24.2 5.9

«The results show that a direct application of AutoAugment improves significantly the baseline models and

produces state-of-the-art accuracies on these challenging datasets.»



Method Baseline Augmented Improvement A
LSTM [47] 1.7 6.0 1.6

MF [47] 1.7 5.6 2.1
AutoAugment 1.7 4.5 3.2
(ResNet-32)

AutoAugment 6.6 3.6 3.0

(ResNet-56)




Operation 1 Operation 2
Sub-policy 0 (Invert,0.1,7) (Contrast,0.2,6)
Sub-policy 1 (Rotate,0.7,2) (TranslateX,0.3,9)
Sub-policy 2 (Sharpness,0.8,1) (Sharpness,0.9,3)
Sub-policy 3 (ShearY,0.5.8) (Translate Y,0.7,9)
Sub-policy 4 (AutoContrast,0.5,8) (Equalize,0.9,2)
Sub-policy 5 (ShearY,0.2,7) (Posterize,0.3,7)
Sub-policy 6 (Color,0.4,3) (Brightness,0.6,7)
Sub-policy 7 (Sharpness,0.3,9) (Brightness,0.7,9)
Sub-policy 8 (Equalize,0.6,5) (Equalize,0.5,1)
Sub-policy 9 (Contrast,0.6,7) (Sharpness,0.6,5)

Sub-policy 10
Sub-policy 11
Sub-policy 12
Sub-policy 13
Sub-policy 14
Sub-policy 15
Sub-policy 16
Sub-policy 17
Sub-policy 18
Sub-policy 19
Sub-policy 20
Sub-policy 21
Sub-policy 22
Sub-policy 23
Sub-policy 24

(Color,0.7,7)
(Equalize,0.3,7)
(Translate Y,0.4,3)
(Brightness,0.9,6)
(Solarize,0.5,2)
(Equalize,0.2,0)
(Equalize,0.2,8)
(Color,0.9,9)
(AutoContrast,0.8.,4)
(Brightness,0.1,3)
(Solarize,0.4,5)
(Translate ¥,0.9,9)
(AutoContrast,0.9,2)
(Equalize,0.8,8)
(Translate Y,0.7,9)

(TranslateX,0.5,8)
(AutoContrast,0.4,8)
(Sharpness,0.2,6)
(Color,0.2,8)
(Invert,0.0,3)
(AutoContrast,0.6,0)
(Equalize,0.6,4)
(Equalize,0.6,6)
(Solarize,0.2,8)
(Color,0.7,0)
(AutoContrast,0.9,3)
(Translate Y,0.7.9)
(Solarize,0.8,3)
(Invert,0.1,3)
(AutoContrast,0.9,1)

Table 7. AutoAugment policy found on reduced CIFAR-10.

Operation 1 Operation 2
Sub-policy 0 (ShearX,0.9,4) (Invert,0.2,3)
Sub-policy 1 (ShearY,0.9,8) (Invert,0.7,5)
Sub-policy 2 (Equalize,0.6,5) (Solarize,0.6,6)
Sub-policy 3 (Invert,0.9,3) (Equalize,0.6,3)
Sub-policy 4 (Equalize,0.6,1) (Rotate,0.9,3)
Sub-policy 5 (ShearX,0.9,4) (AutoContrast,0.8,3)
Sub-policy 6 (ShearY,0.9.8) (Invert,0.4,5)
Sub-policy 7 (ShearY,0.9.,5) (Solarize,0.2,6)
Sub-policy 8 (Invert,0.9,6) (AutoContrast,0.8,1)
Sub-policy 9 (Equalize,0.6,3) (Rotate,0.9,3)
Sub-policy 10  (ShearX,0.9,4) (Solarize,0.3,3)
Sub-policy 11 (ShearY,0.8,8) (Invert,0.7,4)

Sub-policy 12
Sub-policy 13
Sub-policy 14
Sub-policy 15
Sub-policy 16
Sub-policy 17
Sub-policy 18
Sub-policy 19
Sub-policy 20
Sub-policy 21
Sub-policy 22
Sub-policy 23
Sub-policy 24

(Equalize,0.9,5)
(Invert,0.9.4)
(Contrast,0.3,3)
(Invert,0.8,5)
(ShearY,0.7,6)
(Invert,0.6,4)
(ShearY,0.3,7)
(ShearX,0.1,6)
(Solarize,0.7,2)
(ShearY,0.8,4)
(ShearX,0.7,9)
(ShearY,0.8.,5)
(ShearX,0.7,2)

(Translate’Y,0.6,6)
(Equalize,0.6,7)
(Rotate,0.8,4)
(Translate’Y,0.0,2)
(Solarize,0.4,8)
(Rotate,0.8,4)
(TranslateX,0.9,3)
(Invert,0.6,5)
(Translate Y,0.6,7)
(Invert,0.8,8)
(TranslateY,0.8,3)
(AutoContrast,0.7,3)
(Invert,0.1,5)

Table 8. AutoAugment policy found on reduced SVHN.



AutoAugment-Transfer
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Transfer
augmentation
policies from one
dataset to another

Clear evidence
that
AutoAugment
does not
“overfit”

Resource

requirements




Dataset Train  Classes  Baseline  AutoAugment-
Size transfer

Oxford 102 2,040 102 6.7 4.6

Flowers [ 4]

Caltech-101[15] 3,060 102 19.4 13.1

Oxford-IIIT 3,680 37 13.5 11.0

Pets [14]

FGVC 6,667 100 9.1 1.3

Aiarcraft [ 7]

Stanford 8,144 196 6.4 5.2

Cars [/]

«Policies learned on data distributions closest to the target yield the best performance»



Strengths and Weaknesses
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