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Motivation

o Neural Networks are getting bigger and bigger
> Require high power, memory & computational resources
> Not feasible on smaller devices (smartphones, smart-home devices, ...)

o Goal: Find a small, but still high-performance architecture
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Main |[deo

o Reinforcement Learning approach

o Take larger network (Teacher model) and identify compressed high-
performance smaller network (Student model)
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Underlying Concepts

(1) Knowledge Distillation

« Model compression approach

 Student is trained to learn the exact behavior of the (pre-trained) teacher by
trying to replicate its output

soft labels
predictions

Teacher
distilled| knowledge

hard labels

predictions

Training data
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TUTI
Underlying Concepts

(1) Neural Network Pruning

« Given the teacher model, find a much smaller subset that can provide same
accuracy

« Preserve what matters most, remove redundance
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N2N Process

o Two step reinforcement learning procedure
o First step: Layer removal

o Second step: Layer shrinkage

Teacher model
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Gradients ! E | Gradients

o Therefore: Encode layers of teacher & : % { ‘
O E . g . CO nvo I u t i O n a | | aye r: o tage-1 candidate Stage-2 candidate s

models models I

x; = (ks pn)
where [ layer type, k filter size, s stride, p padding, n number of filters
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Layer Removal (Step 1)

o Input: Teacher model
o Outputs for each layer an action a; € {0, 1}, whether to keep

or remove the corresponding layer - i Y
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Layer Shrinkage (Step 2)

o Input: output model of Step 1

o Outputs for each configuration variable of each layer an action \ yr\\ {\
€ [0.1,0.2, ..., 1], deciding about how much to shrink the el e
Hidden states Hia 8 Fr
parameter ‘ |
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o Underlying policy network: LSTM
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TUTI

Training of the Student model

o Goal: Knowledge Distillation of the teacher model
=) Not only train with hard labels (groundtruth) y;,.,,., but also with
logits z of the teacher

e.g., cross-entropy loss e.g., mean squared error MSE
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Reward Function - Requirements

o Calculation at the end with resulting trained student model
o Reward should depend on

_

> How much is the student compressed? _
= with respect to the teacher

> How good is the student?

o Also:
Model with Model with
low compression > high compression
+ high accuracy + low accuracy

o Set R « —1 for degenerated student models

TUTI
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Reward Function

#params(student)

The relative compression C; € [0,1) is definedas C; =1 #params(teacher)

Given C;, the compression reward R ; is defined as R.; = C;(2 — C;)

(-,
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Reward Function

#params(student)
#params(teacher)

The relative compression C; € [0,1) is definedas C; =1

Given C;, the compression reward R ; is defined as R.; = C;(2 — C;)

Given the validation accuracy of the with trajectory T produced student model Ag;y gene and the (fixed) A
accuracy of the teacher model A;qqcner, the accuracy reward R, ; is defined as
Astudent
Ra,r = A—
\ teacher /
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Reward Function

. . . . 1 _ #params(student)
{ The relative compression C; € [0,1) is definedas C; =1 Fparams(teacher)

Model with
low compression +

Model with
high compression +
low accuracy

Exa m p I e . high accuracy
Rgr =0.75,C, =025 = R_=~0.328
Ror=025C, =075 = R, ~ 0234
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Reward Function

Example:
R,;=0.75,C =025 = R =~ 0.328
R,;=025,C,=075 = R =0.234

Model with
low compression +
high accuracy

Model with
high compression +
low accuracy
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Optimization

.,,,,‘,QWQ ,,,,,,,,, K ledge Distillat K wledge Dis _-Rew d
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o Optimize two policies

» Bi-directional LSTM with parameters 8,cpmope | & ﬁ%% %ﬁ%@% -

tg1 ddt Stage-2 ¢ ddt

» LSTM with parameters Ospink J
o Maximize expected reward over all sequences of actions:

m@ax](e), J(0) = Euy.pnpy (R)

o Optimization: with REINFORCE VoJ(0) = VoEa r~py (R)

Eoyr~Py[Volog Po(at|ar.i—1)) R
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/\ Stage 1 (removal): m

Experiments

0.8
. M 0.7 r{’_liann
o Teacher: VGG-13 (9.4 Mio Params) g A Van,
[ - lf,\v_,ﬁ.-"k-"‘v' LW
u !
0.4 /
. . I fo —— Accuracy
o Epochs Training Student: 5 03"\ Reward
I; 20 410 il Bl 100 120 141
MN]ST Iteration
St 2 | & shrink :
Architecture Acc. #Params A Acc. Compr. 1Oage (removal & shrinkage)
VGG-13 Teacher 99.54% 9.4M — —
Student 99.55% 73K +0.01% 127x 0.8
) 0.6
S
&
Model Acc. #Params Compr. % Ea
Teacher (MNIST/VGG-13)  99.54% 9.4M 1x 0.2 —— Accuracy
Student (Stage 1 & 2) 98.91% 17K 553x Reward "
0'00 100 200 300 400 500 N2N Learning

Iteration June 9th, 2021



Experiments

o Teacher: VGG-19 (20.2 Mio Params)
o Dataset: CIFAR-10
o Epochs Training Student: 5

CIFAR-10

91.97% 20.2M
92.05%

VGG-19 Teacher
Student (Stagel)

Student (Stage1+Stage2) 91.64% 984K

+0.08%
-0.33%
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Evaluation
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Thank you!
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