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Meta-Learning

Problem: Deep learning is successful with a large amount of data, but often data is scarce

Solution: Use data from other tasks to learn how to learn » Rapid adaptation on the new task
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Few-Shot Learning

Dataset Classifier

Generalizing to a new task
using "few" samples and
prior knowledge

Classes with many samples  Classes with few samples

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-alcaa289f18

Orcun Cetintas | AutoML TI.ITI



One-Shot Video Object Segmentation [1]

First frame Ground truth

Test frame
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Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn, Pieter Abbeel, and Sergey Levine. International Conference on Machine Learning. PMLR, 2017.

Paper's aim: learning a model initialization

that can achieve rapid adaptation —— o
]
I

Paper proposes: an algorithm for meta-learning .- D

* model-agnostic
e applicable to different learning problems
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Model-Agnostic Meta-Learning (MAML) - Overview

Find model parameters that are sensitive to changes in the task

— meta-learning

9 ---- learning/adaptation
VL3
VL,
V[:l __,»"'.93
Y
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Model-Agnostic Meta-Learning (MAML) - Overview

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, (3: step size hyperparameters
I: randomly initialize 6

~— 2: while not done do
3:  Sample batch of tasks 7; ~ p(T)

4 for all 7, do
5: Evaluate Vg L7, ( fg) with respect to K examples
Outerloop — ¢ Compute adapted parameters with gradient de-

scent: ) = 0 — aVoLT (fg)
7:  end for

8: Update & <~ 0 — Vo> 1 1 L. (for)
0: end while
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MAML - Overview

Update the model for a task from an initialization

Outer Loop: Optimize for the performance of all models on all tasks

Intuition: We want achieve a low loss after only a few updates on a task

— meta-learning

9 ---- |learning/adaptation
VL;
VL,
V[.:l e -~ 92
L
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MAMIL - Notation

* model fe with parameters 9

« distribution over tasks p(T)
e sampled task 7;

* taskloss £7Ti
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MAML - Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(7T)
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MAML - Inner Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)
for all 7; do

4
5: Evaluate VL7, (fg) with respect to K examples ;.
6: 0; =0 —aVeLlr(fo)

en_or Simple gradient update on the sampled task
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Inner Loop: Update the model for a
task from an initialization




MAML — Outer Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6

2: while not done do Outer Loop: Optimize for the performance of
3:  Sample batch of tasks 7; ~ p(T) all inner loop models on all tasks

4.  for all 7; do

5: Evaluate VL7, (fg) with respect to K examples

6:

en! \OI‘
: en! Wl!lle
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MAML — Outer Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)

4.  for all 7; do

5: Evaluate VL7, (fg) with respect to K examples
7:  end Ior

b Update 00— Vo Sy £ (for).

9: end while
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Meta-objective:

mgin Z Eﬁ(fgg): Z Eﬂ(f@—aVeﬁTi(fe))
Tir~p(T) Tir~~p(T)

( )
Y

Total loss of all
updated models

Meta-update:

0 0—06Ve Y Lr(fo)
k’l?;wp(T)

J
Y

Total loss of all
updated models

TUTI



MAML for Few-Shot Supervised Learning
Regression: predict the outputs of a function from only K datapoints sampled from that function,
after training on many functions with similar statistical properties
learn to classify an object only from K examples, after training on many other types of

objects

* Simply use the general framework with appropriate loss functions!
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MAML for Few-Shot Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters . :
1: randomly initialize 6 ﬁﬂ. (f¢) — E H qu (X(j)) — y(j) ||%, (2)
2: while not done do ) v o T
3:  Sample batch of tasks 7; ~ p(7T) LY !

Regression: Mean-squared error (MSE)

4:  for all 7; do | _
5: Sample K datapoints D = {x), y)1 from 7;
6: Evaluate Vo L7, (fo) using D and L7, in Equation (2)
or (3)
7 Compute adapted parameters with gradient descent:
0; = 60 — aVeLr,(fo)
8: Sample datapoints D; = {x(j )yl )} from 7; for the , ,
meta-update LT.(fs) = Z vy log f4(x\9))
9: end fOl‘ : . X(J),y(J)Nﬂ (3)
10:  Update 0 <= 0 — 58V > 1,y L7:(fo;) using each D; ) )
and L7, in Equation 2 or 3 + (1 —yV’)log(1 — fy(xV))

11: end while
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MAML for Reinforcement Learning

Goal: enable an agent to quickly acquire a new task policy using only a small amount of experience

How to use MAML?
* Use policy gradient method for a differentiable framework
* Sample new examples with the new policy
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MAML for Reinforcement Learning

Algorithm 3 MAML for Reinforcement Learning

Require: p(7): distribution over tasks
Require: «, : step size hyperparameters
1: randomly initialize
2: while not done do
3:  Sample batch of tasks 7; ~ p(7T)

Loss: Negative expected reward

4:  forall 7; do I
5: Sample K trajectories D = {(x1,a1,...xg )} using fo

in 7; ‘C'E (f¢5) - _Ext,athqsaQ’I} ZRi(Xi}at) : (4)
6: Evaluate VL7, (fo) using D and L7, in Equation 4 t=1
7: Compute adapted parameters with gradient descent:

/

8:
9:  endior

10:  Update 6 <= 0 — BVo > 1 ) L£7:(for) using each D;
and L7, in Equation 4
11: end while
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MAML — Task Overfitting and Memorization

Task overfitting: Model aligns too closely to a task and fails to generalize

Memorization problem: Meta-learner memorizes the meta-training tasks rather than learning to adapt

Example: Instead of learning to classify cats, we want to learn to rapidly adapting to classify cats

Solution: Per-task random assignment of image classes to N-way classification labels
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Experiments — Main Questions

 Can MAML enable fast learning of new tasks?

 Can MAML be used for meta-learning in multiple different domains?

 Can MAML models continue to improve with additional gradient updates?
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Experiments - Regression

Task: Regressing to a sine wave (varying amplitude and phase) given K data points
Meta-training on all tasks with MAML + fine-tuning on K data points

Baseline: Pretraining on all tasks with SGD + fine-tuning on K data points

Orcun Cetintas | AutoML



Experiments - Regression

k-shot regression, k=10
—e— MAML (ours)

T -
o - a- pretrained, step=0.02
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MAML, K=10 pretrained, K=10, step size=0.02
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pre-update +: 1gradstep ==+ 10gradsteps — groundtruth 4 A usedforgrad - pre-update -+ 1gradstep ==+ 10 grad steps
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Experiments - Classification

Task: Few shot classification of N unseen classes with only K instances

* Handwritten character classification on Omniglot
- 20 instances of 1623 chars from 50 alphabets %" ?\.

* |mage classification on Minilmagenet
- 64 train, 24 val, 12 test classes
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Experiments - Classification

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% - -
MAML, no conv (ours) 89.7+1.1% | 97.5+ 0.6% — —
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML. (ours) 987+ 04% | 999+ 0.1% | 95.8 £0.3% | 98.9 + 0.2%

Minilmagenet (Ravi & Larochelle, 2017)

S-way Accuracy

1-shot

5-shot

fine-tuning baseline

28.86 £+ 0.54%

49.79 £ 0.79%

nearest neighbor baseline

41.08 £ 0.70%

51.04 + 0.65%

matching nets (Vinyals et al., 2016)

43.56 + 0.84%

55.31 + 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 £ 0.77%

60.60 + 0.71%

MAMILL, first order approx. (ours)

48.07 + 1.75% | 63.15 £ 0.91%

MAML (ours)

48.70 + 1.84% | 63.11 +0.92%
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Experiments - Reinforcement Learning

Task: 2D Navigation - move the point agent to a goal
MAML: Meta-training a policy on all tasks with MAML + fine-tuning

Baseline 1 (pretrained): Pretraining a policy on all tasks + fine-tuning

Baseline 2 (random): Training a policy from scratch

0.4 0.3 0,2 0.l ada 0,1 a2
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Experiments - Reinforcement Learning

point robot, 2d navigation
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Experiments - Reinforcement Learning

Tasks: Locomotion in MuloCo [2] with two robots (cheetah and ant)
* Runin a particular direction

* Runat a particular velocity

Baseline 1 (pretrained): Pretraining a policy on all tasks + fine-tuning

Baseline 2 (random): Training a policy from scratch
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Experiments - Reinforcement Learning

half-cheetah, goal velocity
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Experiments — Main Questions

 Can MAML enable fast learning of new tasks? YES!

« Can MAML be used for meta-learning in multiple differentdomains?  YES!

« Can MAML models continue to improve with additional gradient updates? Yes, but further
explorationis required

* MAML beats the baselines and achieves the SotA
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Discussion

MAML: a model-agnostic meta-learning method based on gradient descent

Cons:
* Model agnostic * Learning rate's influence
* Only requirement is a differentiable task  Computationally costly
* No extra parameters  Hardto train

» Step towards general-purpose meta-learning
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* Reptile [3]: Proposes a new algorithm with only first-order derivatives

e MAML++ [4]: Stabilizes MAML training and proposes improvements
such as learning the learning rate

 Meta-SGD [5]: Learns all components of a meta-optimizer
(initialization, update direction and learning rate)
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