Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Orcun Cetintas
Recent Trends in Automated Machine Learning
Technical University of Munich
July 7th, 2021
Meta-Learning

Problem: Deep learning is successful with a large amount of data, but often data is scarce

Solution: Use data from other tasks to learn how to learn \(\rightarrow\) **Rapid adaptation** on the new task
Few-Shot Learning

Generalizing to a new task using "few" samples and prior knowledge

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18

Orcun Cetintas | AutoML
One-Shot Video Object Segmentation [1]
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Paper's aim: learning a *model initialization* that can achieve *rapid adaptation*

Paper proposes: an algorithm for meta-learning
- model-agnostic
- applicable to different learning problems
Model-Agnostic Meta-Learning (MAML) - Overview

Find model parameters that are **sensitive to changes** in the task
Model-Agnostic Meta-Learning (MAML) - Overview

Algorithm 1 Model-Agnostic Meta-Learning

Require: \(p(\mathcal{T}) \): distribution over tasks

Require: \(\alpha, \beta \): step size hyperparameters

1: randomly initialize \(\theta \)
2: while not done do
3: Sample batch of tasks \(\mathcal{T}_i \sim p(\mathcal{T}) \)
4: for all \(\mathcal{T}_i \) do
5: Evaluate \(\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) \) with respect to \(K \) examples
6: Compute adapted parameters with gradient descent: \(\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta}) \)
7: end for
8: Update \(\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) \)
9: end while
MAML - Overview

Inner Loop: Update the model for a task from an initialization

Outer Loop: Optimize for the performance of all inner loop models on all tasks

Intuition: We want achieve a low loss after only a few updates on a task
MAML - Notation

- model f_θ with parameters θ
- distribution over tasks $p(\mathcal{T})$
- sampled task \mathcal{T}_i
- task loss $\mathcal{L}_{\mathcal{T}_i}$
Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
MAML - Inner Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
4: for all \mathcal{T}_i do
5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
7: end for

Inner Loop: Update the model for a task from an initialization

$$\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

Simple gradient update on the sampled task
MAML – Outer Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(T)$: distribution over tasks

Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks $T_i \sim p(T)$
4: for all T_i do
5: Evaluate $\nabla_{\theta} L_{T_i}(f_\theta)$ with respect to K examples
6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} L_{T_i}(f_\theta)$
7: end for
8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'_i})$
9: end while

Outer Loop: Optimize for the performance of all inner loop models on all tasks
MAML – Outer Loop

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α, β: step size hyperparameters

1: randomly initialize θ
2: **while** not done **do**
3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
4: **for all** \mathcal{T}_i **do**
5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
7: **end for**
8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
9: **end while**

Meta-objective:

$$
\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})
$$

Total loss of all updated models

Meta-update:

$$
\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})
$$

Total loss of all updated models
MAML for Few-Shot Supervised Learning

Regression: predict the outputs of a function from only **K datapoints** sampled from that function, after training on many functions with similar statistical properties.

Classification: learn to classify an object **only from K examples**, after training on many other types of objects.

How to use MAML?
- Simply use the general framework with appropriate **loss functions**!
MAML for Few-Shot Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: \(p(T) \): distribution over tasks

Require: \(\alpha, \beta \): step size hyperparameters

1. randomly initialize \(\theta \)
2. **while** not done **do**
 3. Sample batch of tasks \(T_i \sim p(T) \)
 4. **for all** \(T_i \) **do**
 5. Sample \(K \) datapoints \(D = \{x^{(j)}, y^{(j)}\} \) from \(T_i \)
 6. Evaluate \(\nabla_\theta \mathcal{L}_{T_i}(f_\theta) \) using \(D \) and \(\mathcal{L}_{T_i} \) in Equation (2) or (3)
 7. Compute adapted parameters with gradient descent: \(\theta'_i = \theta - \alpha \nabla_\theta \mathcal{L}_{T_i}(f_\theta) \)
 8. Sample datapoints \(D'_i = \{x^{(j)}, y^{(j)}\} \) from \(T_i \) for the meta-update
 9. **end for**
10. Update \(\theta \leftarrow \theta - \beta \nabla_\theta \sum_{T_i \sim p(T)} \mathcal{L}_{T_i}(f_{\theta'}_{i}) \) using each \(D'_i \) and \(\mathcal{L}_{T_i} \) in Equation 2 or 3
11. **end while**

Regression: Mean-squared error (MSE)

\[
\mathcal{L}_{T_i}(f_\phi) = \sum_{x^{(j)}, y^{(j)} \sim T_i} \| f_\phi(x^{(j)}) - y^{(j)} \|_2^2, \tag{2}
\]

Classification: Cross-entropy loss

\[
\mathcal{L}_{T_i}(f_\phi) = \sum_{x^{(j)}, y^{(j)} \sim T_i} y^{(j)} \log f_\phi(x^{(j)}) + (1 - y^{(j)}) \log(1 - f_\phi(x^{(j)})) \tag{3}
\]
MAML for Reinforcement Learning

Goal: enable an agent to quickly acquire a new task policy using only a small amount of experience

How to use MAML?
• Use policy gradient method for a differentiable framework
• Sample new examples with the new policy
MAML for Reinforcement Learning

Algorithm 3 MAML for Reinforcement Learning

Require: \(p(T) \): distribution over tasks
Require: \(\alpha, \beta \): step size hyperparameters
1: randomly initialize \(\theta \)
2: while not done do
3: Sample batch of tasks \(T_i \sim p(T) \)
4: for all \(T_i \) do
5: Sample \(K \) trajectories \(\mathcal{D} = \{(x_1, a_1, \ldots, x_H)\} \) using \(f_\theta \) in \(T_i \)
6: Evaluate \(\nabla_\theta \mathcal{L}_{T_i}(f_\theta) \) using \(\mathcal{D} \) and \(\mathcal{L}_{T_i} \) in Equation 4
7: Compute adapted parameters with gradient descent:
 \[\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{T_i}(f_\theta) \]
8: Sample trajectories \(\mathcal{D}_i' = \{(x_1, a_1, \ldots, x_H)\} \) using \(f_{\theta_i'} \) in \(T_i \)
9: end for
10: Update \(\theta \leftarrow \theta - \beta \nabla_\theta \sum_{T_i \sim p(T)} \mathcal{L}_{T_i}(f_{\theta_i'}) \) using each \(\mathcal{D}_i' \) and \(\mathcal{L}_{T_i} \) in Equation 4
11: end while

Loss: Negative expected reward

\[
\mathcal{L}_{T_i}(f_\phi) = -\mathbb{E}_{x_t, a_t \sim f_\phi, q_{T_i}} \left[\sum_{t=1}^{H} R_i(x_t, a_t) \right]. \quad (4)
\]
MAML – Task Overfitting and Memorization

Task overfitting: Model aligns too closely to a task and fails to generalize

Memorization problem: Meta-learner *memorizes the meta-training tasks* rather than *learning to adapt*

Example: Instead of *learning to classify cats*, we want to *learn to rapidly adapting to classify cats*

Solution: Per-task random assignment of image classes to N-way classification labels
MAML – Task Overfitting and Memorization

Task overfitting: Model aligns too closely to a task and fails to generalize

Memorization problem: Meta-learner **memorizes the meta-training tasks** rather than **learning to adapt**

Example: Instead of *learning to classify cats*, we want to *learn to rapidly adapting to classify cats*

Solution: Per-task random assignment of image classes to N-way classification labels
Experiments – Main Questions

- Can MAML enable **fast learning** of new tasks?
- Can MAML be used for meta-learning in **multiple different domains**?
- Can MAML models **continue to improve** with additional gradient updates?
Experiments - Regression

Task: Regressing to a sine wave (varying amplitude and phase) given K data points

MAML: Meta-training on all tasks with MAML + fine-tuning on K data points

Baseline: Pretraining on all tasks with SGD + fine-tuning on K data points
Experiments - Regression

- **k-shot regression, k=10**
 - MAML (ours)
 - pretrained, step=0.02
 - oracle

- **MAML, K=5**
 - pre-update
 - 1 grad step
 - 10 grad steps
 - ground truth

- **MAML, K=10**
 - pre-update
 - 1 grad step
 - 10 grad steps

- **pretrained, K=5, step size=0.01**
 - used for grad
 - pre-update
 - 1 grad step
 - 10 grad steps

- **pretrained, K=10, step size=0.02**
 - used for grad
 - pre-update
 - 1 grad step
 - 10 grad steps

Orcun Cetintas | AutoML
Experiments - Classification

Task: Few shot classification of N unseen classes with only K instances

- Handwritten character classification on Omniglot
 - 20 instances of 1623 chars from 50 alphabets

- Image classification on MiniImagenet
 - 64 train, 24 val, 12 test classes
Experiments - Classification

<table>
<thead>
<tr>
<th>Dataset</th>
<th>5-way Accuracy</th>
<th>20-way Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-shot</td>
<td>5-shot</td>
</tr>
<tr>
<td>Omniglot (Lake et al., 2011)</td>
<td>82.8%</td>
<td>94.9%</td>
</tr>
<tr>
<td>MANN, no conv (Santoro et al., 2016)</td>
<td>89.7 ± 1.1%</td>
<td>97.5 ± 0.6%</td>
</tr>
<tr>
<td>Siamese nets (Koch, 2015)</td>
<td>97.3%</td>
<td>98.4%</td>
</tr>
<tr>
<td>matching nets (Vinyals et al., 2016)</td>
<td>98.1%</td>
<td>98.9%</td>
</tr>
<tr>
<td>neural statistician (Edwards & Storkey, 2017)</td>
<td>98.1%</td>
<td>99.5%</td>
</tr>
<tr>
<td>memory mod. (Kaiser et al., 2017)</td>
<td>98.4%</td>
<td>99.6%</td>
</tr>
<tr>
<td>MAML (ours)</td>
<td>98.7 ± 0.4%</td>
<td>99.9 ± 0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>5-way Accuracy</th>
<th>20-way Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-shot</td>
<td>5-shot</td>
</tr>
<tr>
<td>MiniImagenet (Ravi & Larochelle, 2017)</td>
<td>28.86 ± 0.54%</td>
<td>49.79 ± 0.79%</td>
</tr>
<tr>
<td>fine-tuning baseline</td>
<td>41.08 ± 0.70%</td>
<td>51.04 ± 0.65%</td>
</tr>
<tr>
<td>nearest neighbor baseline</td>
<td>43.56 ± 0.84%</td>
<td>55.31 ± 0.73%</td>
</tr>
<tr>
<td>matching nets (Vinyals et al., 2016)</td>
<td>43.44 ± 0.77%</td>
<td>60.60 ± 0.71%</td>
</tr>
<tr>
<td>meta-learner LSTM (Ravi & Larochelle, 2017)</td>
<td>48.07 ± 1.75%</td>
<td>63.15 ± 0.91%</td>
</tr>
<tr>
<td>MAML, first order approx. (ours)</td>
<td>48.70 ± 1.84%</td>
<td>63.11 ± 0.92%</td>
</tr>
<tr>
<td>MAML (ours)</td>
<td>48.70 ± 1.84%</td>
<td>63.11 ± 0.92%</td>
</tr>
</tbody>
</table>

Orcun Cetintas | AutoML
Experiments - Classification

<table>
<thead>
<tr>
<th>Omniglot (Lake et al., 2011)</th>
<th>5-way Accuracy</th>
<th>20-way Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-shot</td>
<td>5-shot</td>
</tr>
<tr>
<td>MANN, no conv (Santoro et al., 2016)</td>
<td>82.8%</td>
<td>94.9%</td>
</tr>
<tr>
<td>MAML, no conv (ours)</td>
<td>89.7 ± 1.1%</td>
<td>97.5 ± 0.6%</td>
</tr>
<tr>
<td>Siamese nets (Koch, 2015)</td>
<td>97.3%</td>
<td>98.4%</td>
</tr>
<tr>
<td>matching nets (Vinyals et al., 2016)</td>
<td>98.1%</td>
<td>98.9%</td>
</tr>
<tr>
<td>neural statistician (Edwards & Storkey, 2017)</td>
<td>98.1%</td>
<td>99.5%</td>
</tr>
<tr>
<td>memory mod. (Kaiser et al., 2017)</td>
<td>98.4%</td>
<td>99.6%</td>
</tr>
<tr>
<td>MAML (ours)</td>
<td>98.7 ± 0.4%</td>
<td>99.9 ± 0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MinImagenet (Ravi & Larochelle, 2017)</th>
<th>5-way Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-shot</td>
</tr>
<tr>
<td>fine-tuning baseline</td>
<td>28.86 ± 0.54%</td>
</tr>
<tr>
<td>nearest neighbor baseline</td>
<td>41.08 ± 0.70%</td>
</tr>
<tr>
<td>matching nets (Vinyals et al., 2016)</td>
<td>43.56 ± 0.84%</td>
</tr>
<tr>
<td>meta-learner LSTM (Ravi & Larochelle, 2017)</td>
<td>43.44 ± 0.77%</td>
</tr>
<tr>
<td>MAML, first order approx. (ours)</td>
<td>48.07 ± 1.75%</td>
</tr>
<tr>
<td>MAML (ours)</td>
<td>48.70 ± 1.84%</td>
</tr>
</tbody>
</table>
Experiments - Reinforcement Learning

Task: 2D Navigation - move the point agent to a goal

MAML: Meta-training a policy on all tasks with MAML + fine-tuning

Baseline 1 (pretrained): Pretraining a policy on all tasks + fine-tuning

Baseline 2 (random): Training a policy from scratch
Experiments - Reinforcement Learning
Experiments - Reinforcement Learning

Tasks: Locomotion in MuJoCo [2] with two robots (cheetah and ant)

- Run in a particular direction
- Run at a particular velocity

Baseline 1 (pretrained): Pretraining a policy on all tasks + fine-tuning

Baseline 2 (random): Training a policy from scratch
Experiments - Reinforcement Learning
Experiments – Main Questions

- Can MAML enable **fast learning** of new tasks? **YES!**

- Can MAML be used for meta-learning in **multiple different domains**? **YES!**

- Can MAML models **continue to improve** with additional gradient updates? **Yes, but further exploration is required**

- MAML beats the baselines and achieves the SotA
Discussion

MAML: a model-agnostic meta-learning method based on gradient descent

Pros:
- Model agnostic
- Only requirement is a differentiable task
- No extra parameters
- Step towards general-purpose meta-learning

Cons:
- Learning rate's influence
- Computationally costly
- Hard to train
• **Reptile [3]**: Proposes a new algorithm with only first-order derivatives

• **MAML++ [4]**: Stabilizes MAML training and proposes improvements such as learning the learning rate

• **Meta-SGD [5]**: Learns all components of a meta-optimizer (initialization, update direction and learning rate)
References

Discussion

MAML: a model-agnostic meta-learning method based on gradient descent

Pros:
- Model agnostic
- Only requirement is a differentiable task
- No extra parameters
- Step towards general-purpose meta-learning

Cons:
- Learning rate's influence
- Computationally costly
- Hard to train