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Motivation

Search cost for CIFAR-10 architecture:

Architecture Search method GPU days In years
NAS [2] Reinforcement Learning (RL) 22400 61.3
NASNet [3] RL 2000 5.5
AmoebaNet [4] | Evolutionary Algorithm 3150 8.6
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Motivation

NASNet and AmoebaNet
e Good results
e Inefficient search

Search space: discrete and non-differentiable — RL and Evolution

More efficient (faster) search possible with gradient information directly from the search space

Differentiable Architecture Search (DARTS)
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Search Space: NASNet

Cell can be represented as a Directed Acyclic Graph

Nodes = latent representations
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Search Space: NASNet

Cell can be represented as a Directed Acyclic Graph

Nodes = latent representations
Edges = operations

sep
3x

sep
5x

e 2 input nodes
(outputs of 2 previous cells)

e 5intermediate nodes

4 ‘m__ '

(each with 2 edges from previous nodes) o
Normal Cell Reduction Cell

e 1 output node (concatenate all intermediate nodes)
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Search Space: DARTSy

Input and output nodes: fixed

Intermediate nodes: fix to add

(guarantees that dimension stays the same)

Learning cell = Learning edges A

(which operations and which input nodes)
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Search Space: Continuous Relaxation

Mixture of operations through softmax:
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Search Space: Continuous Relaxation
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Search Space: Continuous Relaxation

Mixture of operations through softmax:
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o(x): function applied to latent representation x
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Search Space: Continuous Relaxation

Mixture of operations through softmax:
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0: set of candidate operations ? \
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o(x): function applied to latent representation x

a (&) operation mixing weights for edge (i, j) — “encoding of the architecture”
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Search Space: Specific Experiment Settings
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Search Space: Specific Experiment Settings

Convolutional cells:
e 7 nodes (2 input, 4 intermediate, 1 output)
e Inputs: outputs of the 2 previous cells (direct and skip connection)
e Operations (O): {{3x3, 5x5} separable convolutions, {3x3, 5x5} dilated separable convolutions, 3x3
max pooling, 3x3 average pooling, identity, zero}
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Search Space: Specific Experiment Settings

Convolutional cells:
e 7 nodes (2 input, 4 intermediate, 1 output)
e Inputs: outputs of the 2 previous cells (direct and skip connection)
e Operations (O): {{3x3, 5x5} separable convolutions, {3x3, 5x5} dilated separable convolutions, 3x3
max pooling, 3x3 average pooling, identity, zero}

Recurrent cells:
e 12 nodes (2 input, 9 intermediate, 1 output)
e Inputs: current input and previous hidden state
e Operations (O): {linear transformations followed by one of {tanh, ReLU, sigmoid} activations, identity,
zero}
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Optimization
Goal: jointly learn architecture a and weights w
Bilevel Optimization:

Inner optimization: find best weights on training set (with current architecture)
Outer optimization: find best architecture on validation set

min Ly, (W (@), &)
a

s.t. w*(a) = argmin,, L;qin (W, @)
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Optimization
Goal: jointly learn architecture a and weights w
Bilevel Optimization:

Inner optimization: find best weights on training set (with current architecture) - Problematic!
Outer optimization: find best architecture on validation set

min Ly, (W (@), &)
a

s.t. w*(a) = argmin,, L;qin (W, @)
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Optimization: Approximation
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Approximate w*

Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

12



Optimization: Approximation
Approximate w*

First order approximation:

VoLlpaW*(a),a) = Vg Ly,g(w, a)
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Optimization: Approximation
Approximate w*

First order approximation:

VoLlpaW*(a),a) = Vg Ly,g(w, a)

Second order approximation (one gradient descent step):

VaLlpaW*(a),a) = Vo Lyg(W =&V Lygin(w, @), a)
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Optimization: Approximation
With second order approximation still problematic: second order gradient (gradient of gradient)

VaLval(W*(“)r a) = Vo LW =&V, Ligin(w, @), a)
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Optimization: Approximation
With second order approximation still problematic: second order gradient (gradient of gradient)

VaLval(W*(“)r a) = Vo LW =&V, Ligin(w, @), a)

With chain rule, can be rewritten as:
Va['val(W’: a) — Evé,wﬁtrain (w,a) VW’Lval (W,: a)

where: w' =w — &V, Ligin(w, @)
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Optimization: Approximation
Second order gradient leads to very large matrix vector multiplication:

V(ZX,W['tTain (W' CZ) vw’['val (W,' CZ), where: w' =w — E vatrain(W» a)
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Can be approximated by finite differences with step size ¢ (from multivariate Taylor expansion):
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Optimization: Approximation
Second order gradient leads to very large matrix vector multiplication:

V(Zx,thrain (W, CZ) Vw’Lval (WIJ CZ), where: w' =w — E VWLtrain(W» a)

Can be approximated by finite differences with step size ¢ (from multivariate Taylor expansion):

—Valtrain(w™,a)
2€

V L 1 W+’a
V?Z,W[’train(w, C() VW'['val (W’, C() ~ -a t‘r‘am( )

wherewf =w + eV, L,,,(W,a)
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Optimization: Recap
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Optimization: Recap
Cell architecture and network weights optimized together

Only one network is trained during search

Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6*7) parametrized by o) for each edge (i, ;)
while not converged do
1. Update architecture o by descending V , Lyq1(w — EV oy Lirain (W, ), )
L 2. Update weights w by descending V,, L¢yqin (W, @)

Derive the final architecture based on the learned a.
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Architecture Discretization
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Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

16



Architecture Discretization

Each node gets assigned the top-k strongest edges = largest a’s

(k = 2, only nonzero operations)

Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

16



Architecture Discretization

Each node gets assigned the top-k strongest edges = largest a’s

sep_conv_3x3

(k = 2, only nonzero operations)

Resulting discrete cells:
Normal cell learned on CIFAR-10.

max_pool_3x3

Reduction cell learned on CIFAR-10. Recurrent cell learned on PTB.
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Architecture Discretization

Each node gets assigned the top-k strongest edges = largest a’s

sep_conv_3x3

(k = 2, only nonzero operations)

Resulting discrete cells:
Normal cell learned on CIFAR-10.

max_pool_3x3

(get retrained, do not keep the w’s)

Reduction cell learned on CIFAR-10. Recurrent cell learned on PTB.
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Results
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Results

e Random Search strong baseline
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Results

e Random Search strong baseline
e Bilevel Optimization is essential

Architecture searched on CIFAR-10

CIFAR-10 Test Error (%)

Random Search 3.29+0.15
DARTS (Coordinate descent on all data) 4,16 +0.16
DARTS (Gradient descent on all data) 3.56 +0.10
DARTS (bilevel optimization, first order approximation) 3.00+0.14
DARTS (bilevel optimization, second order approximation) 2.76 £ 0.09
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Results: CIFAR-10
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TUTI

Results: CIFAR-10

Architecture Test Error (%) [ Params (M) |Search cost | Search method
(GPU days)

DenseNet-BC 3.46 25.6 - manual

NASNet-A + cutout 2.65 3.3 2000 RL

AmoebaNet-B + cutout 2.55 £ 0.05 2.8 3150 evolution

DARTS (second order) + cutout 2.76 = 0.09 3.3 4 gradient-based

(DARTS repeated 4 times with different initializations, best one selected)
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Results

Convolutional cells (searched on CIFAR-10)
e Also transferable to ImageNet
e Competitive with NASNet
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Results

Convolutional cells (searched on CIFAR-10)
e Also transferable to ImageNet
e Competitive with NASNet

Recurrent cells (searched on PTB)

e State-of-the-art results on PBT
e Less transferrable to WT2
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Conclusion
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Mismatch between optimized mixture cell and discretized version
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Conclusion

Advantages:
Much more efficient architecture search, can be performed without massive resources
You can search for architectures for your own projects: DARTS GitHub

Potential issues:
Mismatch between optimized mixture cell and discretized version
Only mentioned by authors, no quantification given
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Conclusion - further work in NAS

DARTS direction:
Made NAS much more accessible, which lead to a lot of follow up work

 P-DARTS|[7], FairDARTS [8], DARTS+ [9], sharpDARTS [10] (better performance)
* PC-DARTS [11] (reduce computational cost, use larger batch size, better performance)
*  UNnNAS [12] (unsupervised NAS, without human annotated labels)

o ProxylessNAS [13] (reduce computational cost, search on target dataset, low latency objective, better performance)

* And many, many more...
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Conclusion - further work in NAS

RL and evolution direction:

MnasNet [5] — multi-objective optimization: maximize accuracy and minimize FLOPS
Was used for EfficientNet [6]
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Questions?
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