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Search cost for CIFAR-10 architecture:
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Architecture Search method GPU days In years

NAS [2] Reinforcement Learning (RL) 22400 61.3

NASNet [3] RL 2000 5.5

AmoebaNet [4] Evolutionary Algorithm 3150 8.6
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NASNet and AmoebaNet

● Good results

● Inefficient search

Search space: discrete and non-differentiable → RL and Evolution

More efficient (faster) search possible with gradient information directly from the search space

Differentiable Architecture Search (DARTS)

Motivation
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Cell can be represented as a Directed Acyclic Graph

Nodes = latent representations

Edges = operations

● 2 input nodes 

(outputs of 2 previous cells)

● 5 intermediate nodes

(each with 2 edges from previous nodes)

● 1 output node (concatenate all intermediate nodes)

Search Space: NASNet [3]
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Input and output nodes: fixed

Intermediate nodes: fix to add

(guarantees that dimension stays the same)

Learning cell = Learning edges

(which operations and which input nodes)
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Mixture of operations through softmax:

ത𝑜 𝑖,𝑗 𝑥 = ෍

𝑜∈𝑂

exp(𝛼𝑜
(𝑖,𝑗)

)

σ𝑜′∈𝑂 exp(𝛼𝑜′
(𝑖,𝑗)

)
𝑜(𝑥)
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Mixture of operations through softmax:

ത𝑜 𝑖,𝑗 𝑥 = ෍

𝑜∈𝑂

exp(𝛼𝑜
(𝑖,𝑗)

)

σ𝑜′∈𝑂 exp(𝛼𝑜′
(𝑖,𝑗)

)
𝑜(𝑥)

𝑂: set of candidate operations

𝑜(𝑥): function applied to latent representation 𝑥

𝛼(𝑖,𝑗): operation mixing weights for edge (𝑖, 𝑗) – “encoding of the architecture”
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max pooling, 3×3 average pooling, identity, zero}
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● Operations (O): {{3×3, 5×5} separable convolutions, {3×3, 5×5} dilated separable convolutions, 3×3 

max pooling, 3×3 average pooling, identity, zero}

Recurrent cells:

● 12 nodes (2 input, 9 intermediate, 1 output)

● Inputs: current input and previous hidden state

● Operations (O): {linear transformations followed by one of {tanh, ReLU, sigmoid} activations, identity, 

zero}
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Bilevel Optimization: 
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- Problematic!

Goal: jointly learn architecture 𝛼 and weights 𝑤

Bilevel Optimization: 

Inner optimization: find best weights on training set (with current architecture)

Outer optimization: find best architecture on validation set

min
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ℒ𝑣𝑎𝑙(𝑤
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∇𝛼ℒ𝑣𝑎𝑙 𝑤
∗(𝛼), 𝛼 ≈ ∇𝛼 ℒ𝑣𝑎𝑙 𝑤, 𝛼

Second order approximation (one gradient descent step):
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With second order approximation still problematic: second order gradient (gradient of gradient)
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∇𝛼ℒ𝑣𝑎𝑙 𝑤
∗(𝛼), 𝛼 ≈ ∇𝛼 ℒ𝑣𝑎𝑙 𝑤 − 𝜉 ∇𝑤ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼), 𝛼

With chain rule, can be rewritten as:

∇𝛼ℒ𝑣𝑎𝑙 𝑤
′, 𝛼 − 𝜉∇𝛼,𝑤

2 ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) ∇𝑤′ℒ𝑣𝑎𝑙(𝑤
′, 𝛼)

where: 𝑤′ = 𝑤 − 𝜉 ∇𝑤ℒ𝑡𝑟𝑎𝑖𝑛 𝑤, 𝛼
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Second order gradient leads to very large matrix vector multiplication:
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Second order gradient leads to very large matrix vector multiplication:
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∇𝛼,𝑤
2 ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) ∇𝑤′ℒ𝑣𝑎𝑙(𝑤
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2𝜖

where 𝑤± = 𝑤 ± 𝜖 ∇𝑤′ℒ𝑣𝑎𝑙 𝑤
′, 𝑎
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Each node gets assigned the top-k strongest edges = largest 𝛼’s 

(k = 2, only nonzero operations)

Resulting discrete cells:

(get retrained, do not keep the 𝒘’s)

Architecture Discretization
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● Random Search strong baseline

● Bilevel Optimization is essential

Architecture searched on CIFAR-10 CIFAR-10 Test Error (%)

Random Search 3.29 ± 0.15

DARTS (Coordinate descent on all data) 4.16 ± 0.16

DARTS (Gradient descent on all data) 3.56 ± 0.10

DARTS (bilevel optimization, first order approximation) 3.00 ± 0.14

DARTS (bilevel optimization, second order approximation) 2.76 ± 0.09
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Architecture Test Error (%) Params (M) Search cost 

(GPU days)

Search method

DenseNet-BC 3.46 25.6 - manual

NASNet-A + cutout 2.65 3.3 2000 RL

AmoebaNet-B + cutout 2.55 ± 0.05 2.8 3150 evolution

DARTS (second order) + cutout 2.76 ± 0.09 3.3 4 gradient-based

(DARTS repeated 4 times with different initializations, best one selected)
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Convolutional cells (searched on CIFAR-10)

● Also transferable to ImageNet

● Competitive with NASNet

Recurrent cells (searched on PTB)

● State-of-the-art results on PBT

● Less transferrable to WT2
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Advantages:

Much more efficient architecture search, can be performed without massive resources

You can search for architectures for your own projects: DARTS GitHub

Potential issues:

Mismatch between optimized mixture cell and discretized version

Only mentioned by authors, no quantification given

https://github.com/quark0/darts


Conclusion - further work in NAS

21Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth



Conclusion - further work in NAS

21Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

DARTS direction:



Conclusion - further work in NAS

21Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

DARTS direction:

Made NAS much more accessible, which lead to a lot of follow up work



Conclusion - further work in NAS

21Recent trends in AutoML (IN2107, IN4954) | DARTS | Philipp Foth

DARTS direction:

Made NAS much more accessible, which lead to a lot of follow up work

• P-DARTS [7], FairDARTS [8], DARTS+ [9], sharpDARTS [10] (better performance)

• PC-DARTS [11] (reduce computational cost, use larger batch size, better performance)

• UnNAS [12] (unsupervised NAS, without human annotated labels)

• ProxylessNAS [13] (reduce computational cost, search on target dataset, low latency objective, better performance)

• And many, many more…
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RL and evolution direction:

MnasNet [5] → multi-objective optimization: maximize accuracy and minimize FLOPS

Was used for EfficientNet [6]



Questions?
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