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Few-Shot Learning
(Normal) Learning:

• Goal: Learn some function or behaviour for one given task T that can be applied at test time

• Given at training: (Large) set of training samples/trajectories

• Given at test: One (or more) sample(s)

Few-shot (K -shot) Learning:

• Goal: Learning to adapt quickly (at test time) to new task Ti

− After given K samples
− Continue adaption when more samples (> K ) are available

• Given at training: Set of tasks Ti from distribution p(T )
• Given at adaption: One task Ti with only K training samples

• Given at test: One (or more) sample(s)
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How does a few-shot learning dataset look like?

Figure: Meta-Training and Meta-Test dataset example for image classification, taken from [RL17]
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How can we improve few-shot learning?

Why are humans good at few-shot learning

• Integrate a lot of prior experience with the few samples of new information
⇒ e.g. something Bayesian inference like

• Parameter initialization is crucial

Challenges

• Bayesian inference in practice not feasible

• Gradient-based methods are not designed for constrained number of steps/samples

• How to integrate prior experience?

• Avoid overfitting to new data
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Meta-Learning – Learning how to learn
Basics

• Meta-learner (agent) contains learning sub-system (named: learner or model)

• Meta-learner adapts/trains learner using experience

Experience gained from Meta-knowledge:

• Previous episodes on same learning task and dataset

• (Many) Different learning tasks with different datasets (e.g. different problems or domains)

What can be meta-learned:

• Optimizer / Optimizer Parameters

• General features / metrics relevant for many tasks in task distribution

• Initial parameters
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Model-Agnostic Meta-Learning (MAML)
for Fast Adaptation of Deep Networks
from Chelsea Finn, Pieter Abbeel and Sergey Levine

• Adapt initialization: Initial parameters are meta-learned
• Optimize for model that can be fine-tuned fast for many tasks without overfitting
− Not perfect for a single task
− Maximum (average) performance on many tasks after short training

(few samples, few gradient descent steps)
• Use gradient-based meta-training with gradient-based training in inner loop
− Loss: task-specific
− Meta-Loss: Performance of trained model on task-specific validation set

Figure: Parameter path, taken from [FAL17]
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Algorithm [FAL17]
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Algorithm [FAL17]
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• Gradient of gradient (second derivative) involved
• Use Hessian-vector products:
− Additional backward pass required (suppored out-of-the-box e.g. by Tensorflow)
− Computational very expensive
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Alternative: First-Order MAML (FOMAML)

∇θL(val)
Ti

(θ′
i ) ≈ ∇θ′

i
L(val)
Ti

(θ′
i )

• First-Order Approximation, drop second derivative

• Only compute gradient at position θ′
i – after the update

• Less computational expensive (about 33% speedup)

Results:

• Achieves similar (almost as good) results

• Most power of MAML comes from gradient of objective after update of parameters – not from
derivative through gradient update

Explanation:

• ReLU NNs locally almost linear⇒ second derivative near 0
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Inner Loop vs. Outer loop
Learning of Task Ti Meta-Learning [FAL17]

Data Set
{(x (Ti ,j)

1 , a(Ti ,j)
1 , . . . , x (Ti ,j)

H , a(Ti ,j)
H )}K

j=1 {Ti}N
i=1

Data Distribution
x1 ∼ qTi(x1), xt+1 ∼ qTi(xt+1|xt , at) Ti ∼ p(T )

Loss

LTi(fθ)

∑
Ti∼p(T )L

(val)
Ti

(fθ′
i
)

=
∑
Ti∼p(T )L

(val)
Ti

(
f
θ−α∇θL(train)

Ti
(fθ)

)
Optimization

θ′i ← θ − α∇θL(train)
Ti

(fθ) θ ← θ − β∇θ

∑
Ti∼p(T )L

(val)
Ti

(fθ′
i
)

Forward Pass
Normal forward-pass Several model training steps (of task)

Backward Pass

Normal backward-pass (backpropagation)
Backprop gradient of meta-loss through loss on

validation data and training process to initial weights
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Inner Loop vs. Outer loop
Supervised Regression Task Ti Meta-Learning [FAL17]
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Inner Loop vs. Outer loop
Supervised Classification Task Ti Meta-Learning [FAL17]
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Inner Loop vs. Outer loop
Reinforcement Learning Task Ti Meta-Learning [FAL17]
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Experiments
Classification

• Tasks: Few-shot image recognition/classification: given a single image, classify it
• Meta-Training: each task with N unseen classes, sampled from larger set of classes
• Training: using K different instances for each of the N classes of the task in each gradient step

Figure: Results of image classification, taken from [FAL17]
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Experiments
Regression

• Tasks: Sine-wave regression: given x regress y of task-specific sine wave

• Meta-Training: each task is sine-wave with different amplitude and phase

• Training: using same K samples on unseen wave in each gradient step

Figure: Results of sine-wave regression, taken from [FAL17]
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Experiments
Reinforcement Learning

• Optimizer: REINFORCE
• Meta-Optimizer: Trut-region policy optimization (TRPO) – with finite differences for

Hessian-vector in TRPO (to not compute third derivatives)
• 2D-navigation Tasks: move to task-specific goal position by controlling velocity
• Locomotion Tasks: simulated robot learns to run into task-specific direction with task-specified

velocity
• Meta-Training: each task with different parameters: goal postition / target direction + velocity
• Training: using K rollouts on specific task

Figure: Results on different locomotion tasks, taken from [FAL17]
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Discussion and Conclusion
Benefits of Meta-Learning

• Small datasets and computational costs for training meta-trained model

Benefits of MAML

• Model Agnostic:
− Few constraints on model/method: parameterized and smooth enough loss
− Many different learning tasks: supervised, reinforcement, . . .
− No constraints on model-architecture: fully connected, convolutional, recurrent, . . .

• No additional learned parameters

• Use of gradient-descent like optimizers for meta-learning

Drawbacks of Meta-Learning

• Very large training sets and computational costs for meta-training

Drawbacks of MAML

• Computational expensive (second derivative)
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