

Learning Step Size Controllers for Robust Neural Network Training Christian Daniel et al.

Recent Trends in Automated Machine Learning Abeeha Shafiq 18.07.2019

Motivation

- Optimizers are sensitive to initial learning rate
- Good learning rate is problem specific
- Manual search required

Learning Rate

Need high learning rate when far away

Need low learning rate when close

Previous Work

- Waterfall scheme
- Exponential/power scheme
- TONGA

Goal

Develop an adaptive controller for the learning rate used in training algorithms such as Stochastic Gradient Descent (SGD) with Reinforcement Learning

Contributions

- Identifying informative features for controller
- Proposing a learning setup for a controller
- Showing that the resulting controller generalizes across different tasks and architectures.

Problem statement for controller

Find the minimizer

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} F(\boldsymbol{X}; \boldsymbol{\omega}),$$

• $F(\cdot)$ sums over the function values induced by the individual inputs

$$F(\mathbf{X}; \boldsymbol{\omega}) = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i; \boldsymbol{\omega}).$$

• $T(\cdot)$ is an optimization operator which yields a weight update vector to find ω_*

$$\Delta \boldsymbol{\omega} = T(\nabla F, \boldsymbol{\rho}, \boldsymbol{\xi}).$$

SGD weight update

$$w := w - \eta \nabla F$$

Learning a Controller

$$\pi^*(\theta) = \operatorname*{argmax}_{\pi} \quad \mathbb{E}_{\pi(\theta)} \Big[r(g(\phi, \theta)) \Big]$$
 $\boldsymbol{\xi} = g(\phi; \boldsymbol{\theta}).$

Relative Entropy Policy Search (REPS)

$$D_{KL}(\pi(\boldsymbol{\theta})||q(\boldsymbol{\theta})) \leq \epsilon$$

Concept similar to Proximal Policy Optimization

$$\mathcal{L}^{CLIP}(\theta) = \mathbb{E}_t \left[\min \left\{ \sigma_t G_t, clip\left(\sigma_t, 1 - \varepsilon, 1 + \varepsilon\right) G_t \right\} \right] \quad \text{with} \quad \sigma_t = \frac{\pi_\theta \left(a_t \mid s_t \right)}{\pi_{\theta_{old}} \left(a_t \mid s_t \right)}$$

Features

- Informative about current state
- Generalize across different tasks and architectures
- Constrained by computation and memory limits

Features

Predictive change in function value.

$$\Delta \tilde{f}_i = \tilde{f}_i - f_i$$

$$\phi_1 = \log \left(\operatorname{Var}(\Delta \tilde{f}_i) \right).$$

• Disagreement of function values.

$$\phi_2 = \log \left(\operatorname{Var} \left(f(\boldsymbol{x}_i; \boldsymbol{\omega}) \right) \right)$$

Mini Batch Setting

- Discounted Average.
 - Smooths outliers
 - Serve as memory

$$\hat{\phi}_i \leftarrow \gamma \hat{\phi}_i + (1 - \gamma) \phi_i$$

- Uncertainty Estimate
 - Estimate of noise in the system

$$\hat{\phi}_{K+i} \leftarrow \gamma \hat{\phi}_{K+i} + (1 - \gamma)(\phi_i - \hat{\phi}_i)^2$$

Experimental Setup

- Datasets: MNIST, CIFAR-10
- Learning Algorithms: SGD and RMSProp
- Model: CNN
- For Learning Controller parameters:
 - Subset of MNIST
 - Small CNN architecture
- $\pi(\theta)$ to a Gaussian with isotropic covariance

$$\pi^*(\theta) = \underset{\pi}{\operatorname{argmax}} \quad \mathbb{E}_{\pi(\theta)} \left[r(g(\phi, \theta)) \right]$$
$$g(\hat{\phi}; \theta) = \exp(\theta^T \hat{\phi})$$
$$r = -\frac{1}{S-1} \sum_{s=2}^{S} \left(\log(E_s) - \log(E_{s-1}) \right)$$

Results

- overhead of 36% for controller training
- Generalized to different variants of CNN
- Did not generalize to different training methods

Static RMSProp vs Controlled RMSProp

MNIST RMSprop

(a) Sensitivity analysis of static step sizes on MNIST.

MNIST Controlled RMSprop Sensitivity to η_0

(b) Sensitivity analysis of the proposed approach on MNIST.

CIFAR RMSprop

CIFAR Controlled RMSprop Sensitivity to η_0

Static SGD vs Controlled SGD

(a) Sensitivity analysis of static step sizes on MNIST.

MNIST Controlled SGD Sensitivity to η_0

(b) Sensitivity analysis of the proposed approach on MNIST.

CIFAR SGD

CIFAR Controlled SGD Sensitivity to η_0

Discussion

Strengths:

- Features
- Not sensitive to initial learning rate
- Effort to generalize

Weakness:

- Tested on only 2 dataset
- CNN only
- Lacks comparison with
 - learning rate decay techniques
 - Grid search for initial learning rate

This is a prior technique to learning the complete optimizer

Questions?