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Motivation

e Improvement with automated machine learning
o data augmentation
o architecture
o activation functions
e learn an optimizer
o faster convergence
o lower final loss value
o more stable training

o no hyperparameter optimisation
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Algorithm 1 General structure of optimization algorithms

O pt| mizer Require: Objective function f
2(®) + random point in the domain of f
for:=1,2,...do
Az w(f, {z(@,... 26D}

e can be rewritten in general form if stopping condition is met then
, return z(—1)
e update rule can be seen as a policy end if
) < 2071 4 Ag
end for

e known handcrafted examples:

o gradient descent: m(f, {33(0), . ,x(i_l)}) = —’va(x(i_l))

1—1
o gradient descent with momentum: 7 (f,{z(?, ... 20-V}) = —y [ Y "oV f(21))
5=0



Reinforcement Learning

e negative loss of the child network as reward T
o encurage fast convergence and low final loss value R= Z —ly (37)
o undiscounted reward t=1

e learn the policy in continous state and action space

e using Guided Policy Search



Guided Policy Search

e Trajectory Optimization (learn dynamics)

e Supervised Learning (optimize policy)




TUTI
Guided Policy Search - Trajectory Optimization

e dynamics calculates the response of the system when changing the variables
e trajectory is the path of optimization steps during training
e initial trajectory is chosen to behave like SGD with momentum
e trajectory distributions are more stable, especially for discontinous dynamics
e need to approximate dynamics
o sample distribution and linearize at each time step
o number of samples can be reduced with knowledge of previous samples

e trajectories musn’t deviate to much for good linear approximation

min EBpl(n)] st D (p(r)lb(r) < e

e solve with lagrangian with dual gradient descent



Guided Policy Search - Supervised Learning

e take the samples of the trajectory distribution

e learn policy supervised by minimizing
T

> M D (p(xi)mo(uelx) [ p(xs, uy))
piil
o minimize the difference between the optimized trajectory and the policy

o converges to a policy which produces the trajectory



Network for the Policy

last 25 loss values {
last 25 gradients {

update value which is added
to the current weights

50 hidden neurons



Experiment Logistic Regression

e artificial data

o single set created based on two multivariant gausians, 50 samples each

o 90 of these sets for training i
o 100 of these sets for testing s 52l
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Experiment Robust Linear Regression

: 2
. 1 (y.i —wlx; — b)
e nonconvex problem min — Z 5

1=

e artificial data
o datapoints: 100 samples from 4 multivariate gaussians per trainings set

o labels: datapoins of each gaussian projected on a different random vector,

a random bias is added %
perturbed with i.i.d. gaussian noise 0.05|
o 120 sets for training -
o 100 sets for testing 4 B
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Experiment Neural Net Classifier

e complex optimization surface with multiple local optima
in 1 Z log exp((Umaz(Wz; + b,0) + ¢)y,)
W,Ub,c M “ >~ exp(Umaz(Wz; +b,0) + ¢);)

e Fully Conected NN with 2 input, 2 hidden and 2 output neurons and regularization
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e artificial data
o datapoints are sampled from 4 differnt gaussians
o labels randomly O or 1 assinged per gaussian
at least 1 gaussian of each lable

o 120 sets for training
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Mean Margin of Victory

Gradient Descent

e outperforms all other policies { /| o MprieRtN
-0.15 ,s“’ { Conjugate Gradient
o the first epochs similar to SGD with momentum [ s fprnic
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Conclusion

e Strength
o simple idea to learn the policy
o outperformed other optimizer
o no hyperparameter tuning
e \Weaknesses
o only toy problems, no real data or application
o scalability problem, need to cache 25 gradients and 25 loss values per weight

o guided policy search not straight forward to train
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