ТЛП

Searching for Activation Functios

Jenny Seidenschwarz Technische Universität München Seminar Course AutoML Munich, 4th of July 2019

Activation Functions

State of the art default scalar activation function: ReLU max(0, x)

- Gradient preserving property
- More easy to optimize

Figure: ReLU activation function

Jenny Seidenschwarz (TUM) | Seminar Course AutoML

Research Goal

Find new scalar activation functions using automated search technique compare them systematically to existing activation functions across multiple different challenging datasets!

Automated Search

ТЛП

Search Space

Challenge: balance size and expressivity of search space

- \rightarrow Simple binary expression tree [1]
- \rightarrow Selection of unary and binary functions

Unary: $x, -x, |x|, x^2, x^3, \sqrt{x}, \beta x, x + \beta, \log(|x| + \epsilon), \exp(x), \sin(x), \cos(x), \sinh(x), \cosh(x), \tanh(x), \tan^{-1}(x), \sinh^{-1}(x), \sin(x), \max(0, x), \min(0, x), \sigma(x), \log(1 + \exp(x)), \exp(-x^2), \operatorname{erf}(x), \beta$

Binary: $x_1 + x_2$, $x_1 x_2$, $x_1 - x_2$, $\frac{x_1}{x_2 + \epsilon}$, $\max(x_1, x_2)$, $\min(x_1, x_2)$, $\sigma(x_1)x_2$, $\exp(-\beta(x_1 - x_2)^2)$, $\exp(-\beta|x_1 - x_2|)$, $\beta x_1 + (1 - \beta)x_2$

ПΠ

Search approach

RNN-Controller

RNN-controller [2] with domain specific language [1]

Train batch of generated activation functions

- ResNet-20
- Image classification on CIFAR-10
- 10k steps

RNN-Controller update

Policy gradient methods:	$\pi \left(a_{t} s_{t}, \theta_{c} \right)$	\rightarrow	$\Delta\theta \leftarrow \alpha \nabla \mathcal{L}_{\theta c}$
--------------------------	--	---------------	---

RNN Controller with **REINFORCE**:

 $\mathcal{L}_{\theta c} = \mathbb{E}_{\pi_{\theta,\tau}}[G_t]$, where $G_t = \sum_{k=t}^{T-1} \gamma^{k-t} r_{k+1}$ Objective function

RNN Controller with PPO:

- → Clipping ensures updates in "trust region"
- \rightarrow Sample efficient

Objective function

 $LCLIP(\theta) = \mathbb{E}_{t}[\min\{\sigma_{t}G_{t}, clip(\sigma_{t}, 1 - \varepsilon, 1 + \varepsilon)G_{t}\}], \quad with \ \sigma_{t} = \frac{\pi_{\theta}(a_{t} \mid s_{t})}{\pi_{\theta}}$

 $clip(\cdot)$

RNN-Controller update

Policy gradient methods:	$\pi \left(a_{t} s_{t}, \theta_{c} \right)$	\rightarrow	$\Delta\theta \leftarrow \alpha \nabla \mathcal{L}_{\theta c}$
--------------------------	--	---------------	---

RNN Controller with REINFORCE:

• Objective gradient One child network: $\nabla \mathcal{L}_{\theta c} = \sum_{t=1}^{T} \nabla_{\theta c} \log \pi (a_t | s_t, \theta_c) (G - b)$

RNN Controller with PPO:

- Objective gradient $\nabla \mathcal{L}_{\theta_c} = \begin{cases} \frac{1}{m} \sum_{k=1}^m \sum_{t=1}^T \nabla_{\theta_c} log \sigma_t(G_k b) & \sigma_t G_k \leq clip \\ 0 & \sigma_t G_t > clip \end{cases}$
 - → G_k = accuracy of child network → b = exponential moving average of rewards

Findings on Activation Functions

Findings on Activation Functions

- 1. 1-2 core units perform best
- 2. Top activation functions always take raw preactivation x as input to final binary function
- 3. Periodic functions (sin, cos, etc.) used by some top performing activation functions
- 4. Activation functions that use division perform poorly

Validation of Performance

Experiments to ensure generalization to deeper networks

_								
	Function	RN	WRN	DN	Function	RN	WRN	DN
Swish	ReLU $[\max(x, 0)]$	93.8	95.3	94.8	ReLU $[\max(x, 0)]$	74.2	77.8	83.7
Ľ	$x \cdot \sigma(eta x)$	94.5	95.5	94.9	$x \cdot \sigma(eta x)$	75.1	78.0	83.9
	$\max(x, \sigma(x))$	94.3	95.3	94.8	$\max(x, \sigma(x))$	74.8	78.6	84.2
	$\cos(x) - x$	94.1	94.8	94.6	$\cos(x) - x$	75.2	76.6	81.8
	$\min(x, \sin(x))$	94.0	95.1	94.4	$\min(x, \sin(x))$	73.4	77.1	74.3
	$(\tan^{-1}(x))^2 - x$	93.9	94.7	94.9	$(\tan^{-1}(x))^2 - x$	75.2	76.7	83.1
	$\max(x, \tanh(x))$	93.9	94.2	94.5	$\max(x, \tanh(x))$	74.8	76.0	78.6
	$\operatorname{sinc}(x) + x$	91.5	92.1	92.0	$\operatorname{sinc}(x) + x$	66.1	68.3	67.9
_	$x \cdot (\sinh^{-1}(x))^2$	85.1	92.1	91.1	$x \cdot (\sinh^{-1}(x))^2$	52.8	70.6	68.1

(a) CIFAR-10 accuracy

(b) CIFAR-100 accuracy

Figure: Generalization to deeper architectures of 8 best activation functions found [5]

ТЛП

Swish

- Nonlinearly interpolation between ReLU and linear function
- Smooth function
- Non-monotinoc function
- Unbounded above and bounded below (like ReLU)

Benchmark of Swish

Further Experiments with Swish

Benchmarked Swish to ReLU and other baseline activation functions

- Different models
- Different challenging real world datasets
- Test with fixed $\beta = 1$ and trainable β

Further Experiments with Swish

CIFAR 10 and 100: ResNet-164, Wide ResNet 28-10 and DenseNet 100-12

• Median of 5 runs for comparison

ImageNet: Inception-ResNet-v2, Inception-v4, Inception-v3, MobileNet and Mobile NASNet-A

- Fixed number of steps, 3 learning rates with RMSProp
- Epsecially good performance on mobile sized modelm slightly underperform Inception-v4

English-German-translation: 12 layer Base Transformer

• Two different learning rates, 300K steps with Adam optimizer

Baselines	ReLU	LReLU	PReLU	Softplus	ELU	SELU	GELU
Swish > Baseline	9	7	6	6	8	8	8
Swish = Baseline	0	1	3	2	0	1	1
Swish < Baseline	0	1	0	1	1	0	0

Figure: Overview performace in experiments [5]

Performance of Swish

Swish – learnable parameter β

Learnable β :

ТЛП

Swich – Challenging current Belief

Non-monotinic bump for x < 0

Swich – Challenging current Belief

No gradient preserving characteristics of derivative:

Conclusion

Main contributions:

- Used a search space as in [1] to find activation functions with a RNN controller [2], that was updated with PPO [3]
- Systematically compared activation functions
- Found new activation function that constantly outperform or is on par with ReLU

Critical aspects:

- Search space restricts results
- Search space designed after human intuition
- Restriction of training steps and training on small architectures might suppress even better activation functions

Future research:

- Only two core units, but more unary and binary functions
- Also take non-scalar activation functions into account

References

[1] Bello, I. & Zoph, B. & Vasudevan, V. & Le, Quoc V. (2017). Neural Optimizer Search with Reinforcement Learning.

[2] Zoph, B., & Le, Quoc V. (2017). Neural Architecture Search with Reinforcement Learning. ArXiv, abs/1611.01578.

[3] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. *ArXiv, abs/1707.06347*.

[4] Elfwing, S. & Uchibe, E. & Doya, K. (2018). Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning. Neural Networks. 107. 10.1016/j.neunet.2017.12.012.

[5] Ramachandran, P., Zoph, B., & Le, Q.V. (2018). Searching for Activation Functions. ArXiv, abs/1710.05941.

Back-up

ТШ

Things to note

If you want to use Swish:

- Already implemented in tensorflow as tf.nn.swish(x)
- When using batch norm: set scale parameter
- Derivative of swish: $f'(x) = \beta f(x) + \sigma(\beta x)(1 \beta f(x))$

Experiment Results - CIFAR

Model	ResNet	WRN	DenseNet
ReLU	94.2	95.6	94.7
PReLU	94.1	95.1	94.5
oftplus	94.6	94.9	94.7
ELŪ	94.1	94.1	94.4
SELU	93.0	93.2	93.9
GELU	94.3	95.5	94.8
ReLU	93.8	95.3	94.8
Swish-1	94.7	95.5	94.8
Swish	94.5	95.5	94.8
		10 000	2011

(a) CIFAR-10 accuracy

(b) CIFAR-100 accuracy

Figure: Benchmark experiments of Swish function to baseline functions on CIFAR [5]

Experiments on ImageNet

Model	Top-1 Acc. (%)			Тор	-5 Acc.	(%)
LReLU	73.8	73.9	74.2	91.6	91.9	91.9
PReLU	74.6	74.7	74.7	92.4	92.3	92.3
Softplus	74.0	74.2	74.2	91.6	91.8	91.9
ELU	74.1	74.2	74.2	91.8	91.8	91.8
SELU	73.6	73.7	73.7	91.6	91.7	91.7
GELU	74.6	-	-	92.0	-	-
ReLU	73.5	73.6	73.8	91.4	91.5	91.6
Swish-1	74.6	74.7	74.7	92.1	92.0	92.0
Swish	74.9	74.9	75.2	92.3	92.4	92.4

(a) Training curves of Mobile NASNet-Aon ImageNet. Best viewed in color

(b) Mobile NASNet-A on ImageNet, with3 different runs ordered by top-1 accuracy. Theadditional 2 GELU experiments are still trainingat the time of submission.

Figure: Benchmark experiments of Swish function to baseline functions on ImageNet [5]

Experiments on ImageNet

Model	Тор	-1 Acc.	(%)	Тор	-5 Acc.	(%)	Model	Top-1 Acc. (%)	Top-5 Acc. (%)
LReLU	79.5	79.5	79.6	94.7	94.7	94.7	LReLU	72.5	91.0
PReLU	79.7	79.8	80.1	94.8	94.9	94.9	PReLU	74.2	91.9
Softplus	80.1	80.2	80.4	95.2	95.2	95.3	Softplus	73.6	91.6
ELU	75.8	79.9	80.0	92.6	95.0	95.1	ELU	73.9	91.3
SELU	79.0	79.2	79.2	94.5	94.4	94.5	SELU	73.2	91.0
GELU	79.6	79.6	79.9	94.8	94.8	94.9	GELU	73.5	91.4
ReLU	79.5	79.6	79.8	94.8	94.8	94.8	ReLU	72.0	90.8
Swish-1	80.2	80.3	80.4	95.1	95.2	95.2	Swish-1	74.2	91.6
Swish	80.2	80.2	80.3	95.0	95.2	95.0	Swish	74.2	91.7

(a) Inception-ResNet-v2 on ImageNetwith 3 different runs. Note that the ELUsometimes has instabilities at the start offraining, which accounts for the first result (b) MobileNet on ImageNet.

Figure: Benchmark experiments of Swish function to baseline functions on ImageNet [5]

Experiments on ImageNet

Model	Top-1 Acc. (%)	Top-5 Acc. (%)	Model	Top-1 Acc. (%)	Top-5 Acc. (%)
LReLU	78.4	94.1	LReLU	79.3	94.7
PReLU	77.7	93.5	PReLU	79.3	94.4
Softplus	78.7	94.4	Softplus	79.6	94.8
ELU	77.9	93.7	ELŪ	79.5	94.5
SELU	76.7	92.8	SELU	78.3	94.5
GELU	77.7	93.9	GELU	79.0	94.6
ReLU	78.4	94.2	ReLU	79.2	94.6
Swish-1	78.7	94.2	Swish-1	79.3	94.7
Swish	78.7	94.0	Swish	79.3	94.6

(a) Inception-v3 on ImageNet

(b) Inception-v4 on ImageNet

Figure: Benchmark experiments of Swish function to baseline functions on ImageNet [5]

Experiments on Machine Translation

Model	newstest2013	newstest2014	newstest2015	newstest2016
LReLU	26.2	27.9	29.8	33.4
PReLU	26.3	27.7	29.7	33.1
Softplus	23.4	23.6	25.8	29.2
ELU	24.6	25.1	27.7	32.5
SELU	23.7	23.5	25.9	30.5
GELU	25.9	27.3	29.5	33.1
ReLU	26.1	27.8	29.8	33.3
Swish-1	26.2	28.0	30.1	34.0
Swish	26.5	27.6	30.0	33.1

Figure: Benchmark experiments of Swish function to baseline functions on WTM English→German (BLEU score) [5]