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Overview

— Increasing interest in automatic architecture discovery

— Most approaches are computationally expensive, e.g. on ImageNet/CIFAR-10:

— 2000 GPU days of reinforcement learning by Zoph et al. (2017)
— 3150 GPU days of evolution by Real et al. (2018)

— Problem: Optimization over discrete domain, requiring many evaluations

— Liu et al. (2018) propose continuous relaxation of the search space
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Search Space

— Search for building blocks instead of entire network architecture
— Building blocks ("cells") can then be stacked/connected recurrently

— Cell is represented as a directed acyclic graph with latent representations as nodes:
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Continuous Relaxation

— Let O be a set of possible operations
— Relax each edge to a softmax weighted mixture of operations from O
~(1 J)( ) Z eXp(agi’j)) ( )
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(4,5)
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— Parametrization by o = {@(i’j)}

— After the search, 6%9) can be discretized by o("J) = argmax, . o a(()i,j)
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Continuous Relaxation
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Optimization

— Joint optimization of model weights and architecture parameters
— Optimize validation loss using gradient descent

— Bi-level optimization problem:
min L, (w* (@), )
(8
s.t. w*(a) = argmin,, Lipqin(w, )

— Gradient can be expressed as

vaﬁval(w* (Oé), Oé)
%Vaﬁval(w — (vaﬁtrai’n (wv a)v a)
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Optimization
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Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation 6(*7) parametrized by (%) for each edge (i, j)
while not converged do
1. Update architecture o by descending V , Lyq1(w — £V Lirain (W, o), @)
(& = 0 1f using first-order approximation)
2. Update weights w by descending V , L,qin (W, @)

Derive the final architecture based on the learned «.
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Optimization
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Experiments & Results
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Experiments & Results
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Experiments & Results
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Experiments & Results

Architecture Test Error Params Search Cost Hops Search
(%) (M) (GPU days) Method
DenseNet-BC (Huang et al., 2017) 3.46 25.6 - - manual
NASNet-A + cutout (Zoph et al., 2018) 2.65 3.3 2000 13 RL
NASNet-A + cutout (Zoph et al., 2018)T 2.83 3.1 2000 13 RL
BlockQNN (Zhong et al., 2018) 3.54 39.8 96 8 RL
AmoebaNet-A (Real et al., 2018) 3.34 + 0.06 3.2 3150 19 evolution
AmoebaNet-A + cutout (Real et al., 2018)T 3.12 3.1 3150 19 evolution
AmoebaNet-B + cutout (Real et al., 2018) 2.55 £ 0.05 2.8 3150 19 evolution
Hierarchical evolution (Liu et al., 2018b) 375 +0.12 15.7 300 6 evolution
PNAS (Liu et al., 2018a) 341 +0.09 3.2 225 8 SMBO
ENAS + cutout (Pham et al., 2018b) 2.89 4.6 0.5 6 RL
ENAS + cutout (Pham et al., 2018b)" 291 4.2 6 RL
Random search baseline* + cutout 3.29 +0.15 3.2 7 random
DARTS (first order) + cutout 3.00 £0.14 33 1.5 7 gradient-based
DARTS (second order) + cutout 2.76 + 0.09 3.3 4 7 gradient-based
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Experiments & Results

. Perplexity Params  Search Cost Search
Architecture valid test . (M)  (GPUdays) "°PS  Method
Variational RHN (Zilly et al., 2016) 679 654 23 - - manual
LSTM (Merity et al., 2018) 60.7 58.8 24 - — manual
LSTM + skip connections (Melis et al., 2018) 609 58.3 24 - - manual
LSTM + 15 softmax experts (Yang et al., 2018) 58.1  56.0 22 — — manual
NAS (Zoph & Le, 2017) - 64.0 25 le4 CPU days 4 RL
ENAS (Pham et al., 2018b)" 68.3 63.1 24 0.5 4 RL
ENAS (Pham et al., 2018b)f 60.8 58.6 24 0.5 4 RL
Random search baseline* 61.8 594 23 2 4 random
DARTS (first order) 60.2 57.6 23 0.5 4 gradient-based
DARTS (second order) 58.1 55.7 23 1 4 gradient-based
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Conclusion

— DARTS proves feasibility of architecture search using gradient descent

— More efficient than non-differentiable approaches and reaches similar performance
— Simple and powerful

— Part of the one-shot family of algorithm search

— Possibly large gap between continuous solution and derived discrete architecture
— Does not find novel architectures in a broad sense

— Bi-level solving algorithm is not mathematically derived but rather a heuristic
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