Learning Transferable Architectures for Scalable Image Recognition

- Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

Seminar - Recent trends in Automated Machine Learning
Sebastian Fellner
Technische Universität München
06. June 2019, Garching
Problem statement

Train a neural network image classification model
Previous solutions and shortcomings

- Architecture engineering
 - Requires domain knowledge
 - Trial and error

- NAS
 - Architecture search is limited to one dataset a time
 - No transferability
 - No scalability
NASNet search space - general idea

- Observation: handcrafted architectures often contain a lot of repetition
- Reduce search space to cells
 - Repeat those for whole architecture
 - Enables transferability
 - search/training is converges faster
 - Generalises better for other tasks
- Only convolutional layers
NASNet search space - architecture

- Two cells
 - Normal cell
 - Reduction cell
- Actual architecture is predefined by cell repetitions
 - Only few hyper parameters
 - Architecture can be scaled easily
Cell generation - cell content

Normal Cell

Reduction Cell
Cell generation - cell content

1 Block = 5 selections
Cell generation - cell content

- B blocks
 - Each block consists of 5 selections
 - (2) Select two inputs
 - (2) Select one function for each input
 - Apply function to input
 - (1) Combine both inputs
 - element wise addition
 - concatenation
 - Blocks are size invariant
 - Stride and padding are selected accordingly
 - All unused hidden states are concatenated to output of cell
 - 1x1 convolutions are applied fit number of filters
 - Number of filters is doubled in reduction cell

- Functions
 - identity
 - 1x7 then 7x1 convolution
 - 3x3 average pooling
 - 5x5 max pooling
 - 1x1 convolution
 - 3x3 depthwise-separable conv
 - 7x7 depthwise-separable conv
 - 1x3 then 3x1 convolution
 - 3x3 dilated convolution
 - 3x3 max pooling
 - 7x7 max pooling
 - 3x3 convolution
 - 5x5 depthwise-separable conv
Cell generation - RNN

- One layer LSTM network
- Predict each block
- Two cells separate
Cell generation - RNN training loop

- Similar to NAS
- Predict cells
- Train resulting architecture on CIFAR10
- Scale probability of cell selection with accuracy
 - Update model weights
Resulting cells

Normal Cell

Reduction Cell
Results

- State of the art performance in 2017
 - On imagenet
 - Mobile (few parameters)
 - Object detection
- RL vs random search

Image Classification on ImageNet
Thank you for your attention!