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à Automatization of CNN and RNN architecture search by a controller RNN
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Neural Architecture Search with Reinforcement 
Learning - Principle
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Finding a CNN Architecture 
with a RNN Controller
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Sampling a CNN Child Network

- CNN architecture can be modelled as a list of tokens
- The controller RNN samples tokens for a fixed number of layers
- The number of layers is increased throughout the controllers training progress 
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Training the Controller with REINFORCE

1. Sample a child network
2. Train the sampled child network until convergence 
3. Optimize parameters !" of the Controller RNN to maximize the validation accuracy # of the 

child network

Objective Function for Policy Gradient:
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CNN: Skip Connections

- Skip connections widen the search space
- Probability of anchor point ! and " to be connected:

P(Layer j in input to layer i) = sigmoid(vT tanh(Wprev ⇤ hj +Wcurr ⇤ hi))
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CNN: Skip Connections – Compilation Failures

- Anchor has no input connection à Use image as input
- Anchor has no output à Connect anchor to the final layer
- Different input sizes à Pad all inputs to the same size
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Experimental Results for CNN on CIFAR-10

- Controller is a two layer LSTM
- 800 networks are trained on 800 CPUs concurrently at any time
- After training 12 800 architectures, they selected the one with the best validation score
- Best architecture is then optimized by a hyperparameter grid search
- Transfer learning is not discussed
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Experimental Results for CNN on CIFAR-10
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Experimental Results for CNN on CIFAR-10
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Finding a RNN Cell
with a RNN Controller
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Sampling RNN 1: Model a RNN Cell Architecture
Simple RNN Cell LSTM Cell

ht = tanh(W1 ⇤ xt +W2 ⇤ ht�1) ht, ct = f(xt, ht�1, ct�1)

à Model Cells by a tree structure with:
- Combination Method
- Activation Function 

à Manually selected base number
determines the cell complexity
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Sampling RNN 2: Sampling of the tree
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RNN - Finding new Cell Architectures

LSTM Cell NAS Cell
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Experimental Results for RNN on Penn Treebank

- Penn Treebank is a benchmark for language modelling
- 400 networks are trained on 400 CPUs concurrently at any time, in total 15,000 networks 

were trained
- Grid search on the best cell
- Improved state of the art perplexity 
- Transfer Learning:

- Use of the cell on the same dataset for a different task
- Transfer to GNMT framework, on the WMT'14 English-German translation dataset
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Experimental Results for RNN on Penn Treebank
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Strengths and Weaknesses

+   Neural Architecture Search introduced a new research direction
• AutoAugment: Learning Augmentation Policies from Data, Cubuk et.al.
• Searching for Activation functions, Ramachandran et.al.
• Learning Transferable Architectures for Scalable Image Recognition, Zoph et.al.

+   Generalization of the RNN Cell

- Fix of 50 training epochs
- Wide search space and extreme resources
- Transfer learning for CNNs is not addressed


