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TUTI

Neural Architecture Search with Reinforcement
Learning - Principle

- Automatization of CNN and RNN architecture search by a controller RNN

Sample architecture A
with probability p

| |

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller
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Finding a CNN Architecture
with a RNN Controller
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Sampling a CNN Child Network

— CNN architecture can be modelled as a list of tokens
— The controller RNN samples tokens for a fixed number of layers
— The number of layers is increased throughout the controllers training progress
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Training the Controller with REINFORCE

1. Sample a child network

2. Train the sampled child network until convergence

3. Optimize parameters 6. of the Controller RNN to maximize the validation accuracy R of the
child network

Objective Function for Policy Gradient: Ly, = E Rt Z vV g

Gradient of the Objective Function: VL = Z Vo. logw(at\st, ¢) Ry
t=1

For one child network:  V.Lj, = Z V. logm(at|se, 0.)R
t=1

m T
For m child networks with baseline:  VLgy = Z Z 0. log m(a¢|se, 0.)(Rr — b)
k: t=1
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CNN: Skip Connections

— Skip connections widen the search space
— Probability of anchor point j and i to be connected:

P(Layer j in input to layer i) = sigmoid (v’ tanh(Wprew * hj + Weyrr * hy))

N-1 skip connections
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CNN: Skip Connections — Compilation Failures

— Anchor has no input connection - Use image as input
— Anchor has no output - Connect anchor to the final layer
— Different input sizes - Pad all inputs to the same size

N-1 skip connections
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Experimental Results for CNN on CIFAR-10

- Controller is a two layer LSTM

- 800 networks are trained on 800 CPUs concurrently at any time

- After training 12 800 architectures, they selected the one with the best validation score
- Best architecture is then optimized by a hyperparameter grid search

- Transfer learning is not discussed
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Experimental Results for CNN on CIFAR-10

So
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Experimental Results for CNN on CIFAR-10

Model | Depth  Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 797
Highway Network (Srivastava et al., 2015) - - 172
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 5.22
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016¢)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016c¢) 110 1.7M 5.23
1202 10.2M 491

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7”M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 42M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65
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Finding a RNN Cell
with a RNN Controller
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TUm
Sampling RNN 1: Model a RNN Cell Architecture

Simple RNN Cell LSTM Cell
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- Model Cells by a tree structure with: 9
- Combination Method ht
- Activation Function T
- Manually selected base number Tree
. . Index 2
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Tree Tree
Index 0 Index 1
Nt Xt hi.q Xt

Nick Harmening | AutoML | Neural Architecture Search with Reinforcement Learning 12



Sampling RNN 2: Sampling of the tree
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RNN - Finding new Cell Architectures

LSTM Cell

identity ()

elem_mult

sigmoid

NAS Cell

identity

elem_mult
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Experimental Results for RNN on Penn Treebank

- Penn Treebank is a benchmark for language modelling
- 400 networks are trained on 400 CPUs concurrently at any time, in total 15,000 networks
were trained
- Grid search on the best cell
- Improved state of the art perplexity
- Transfer Learning:
- Use of the cell on the same dataset for a different task
- Transfer to GNMT framework, on the WMT'14 English-German translation dataset
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Experimental Results for RNN on Penn Treebank

Model | Parameters  Test Perplexity
Mikolov & Zweig (2012) - KN-5 2M* 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA T™M* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache omMm* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sMm? 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M 75.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 5IM 73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 2IM 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 5IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4
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Strengths and Weaknesses

+ Neural Architecture Search introduced a new research direction

« AutoAugment: Learning Augmentation Policies from Data, Cubuk et.al.

« Searching for Activation functions, Ramachandran et.al.

« Learning Transferable Architectures for Scalable Image Recognition, Zoph et.al.
+ Generalization of the RNN Cell

- Fix of 50 training epochs

- Wide search space and extreme resources
- Transfer learning for CNNs is not addressed
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