

Learning What Data to Learn

Yang Fan et al.

Recent Trends in Automated Machine Learning Muhammad Shahbal Khan

ТЛП

Introduction

- SGD is used to train Neural Networks.
- Often multiple epochs are required to achieve an effective model.
- Traversing more data takes more effort.

ТШ

Introduction

- Would an intelligent data selection strategy be useful?

ТШ

Introduction

- Would an intelligent data selection strategy be useful?

Previous Works

- Hardness as a Heuristic

ТUП

Previous Works

- Hardness as a Heuristic
 - Curriculum Learning (Bengio et al.)
 - Based on heuristic understandings of the data.

ТUП

Previous Works

- Hardness as a Heuristic
 - Curriculum Learning (Bengio et al.)
 - Based on heuristic understandings of the data.

- Self Paced Learning (Kumar et al.)
 - Uses training loss as selection strategy.

ТЛП

Previous Works

- Hardness as a Heuristic
 - Curriculum Learning (Bengio et al.)
 - Based on heuristic understandings of the data.

- Self Paced Learning (Kumar et al.)
 - Uses training loss as selection strategy.
- Not Dynamic...

ТЛП

Contribution

- Neural Data Filter (NDF)
 - Based on Deep Reinforcement Learning, (REINFORCE)

$$\Theta \leftarrow \Theta + \alpha v_t \sum_m \frac{\partial \log P_\Theta(a_m | s_m)}{\partial \Theta}$$

- A binary classification algorithm as a policy function.

Neural Data Filter

NDF acts as a *teacher* to the base SGD model

- Data features:
 - label categories(one-hot encodings), sentence length, semantic features, histograms etc.

- Data features:
 - label categories(one-hot encodings), sentence length, semantic features, histograms etc.
- Base model features:
 - mini-batch number/ iteration number, average historical training loss, validation accuracy etc.

- Data features:
 - label categories(one-hot encodings), sentence length, semantic features, histograms etc.
- Base model features:
 - mini-batch number/ iteration number, average historical training loss, validation accuracy etc.
- Combined data and model features:
 - predicted class probabilities, loss on current mini-batch, margin between predicted and actual values etc.

ТЛП

Training process

Algorithm 1 SGD Training with Neural Data Filter.

Input: Training data *D*.

1. Randomly sample a subset of NDF training data D' from D.

2. Optimize NDF policy network $A(s; \Theta)$ based on D' by policy gradient (details in Algorithm 2).

3. Apply $A(s; \Theta)$ to full dataset D to train the base machine learning model by SGD.

Output: The base machine learning model.

Algorithm 1 Train NDF policy. Input: Training data D'. Episodes L. Mini-batch size M. Discount factor $\gamma \in [0, 1]$. Randomly split D' into two disjoint subsets: D'_{train} and D'_{dev} . Initialize NDF data filtration policy $A(s, a; \Theta)$, i.e., $P_{\Theta}(a|s)$. for each episode $l = 1, 2, \cdots, L$ do Initialize the base machine learning model. Shuffle D'_{train} to get the mini-batches sequence $\{D_1, D_2, \cdots\}$. T = 0.while stopping criteria is not met do T = T + 1.Sample data filtration action for each data instance in D_T = $\{d_1, \cdots, d_M\}: a = \{a_m\}_{m=1}^M, a_m \propto P_{\Theta}(a|s_m).$ Update base model by SGD based on the selected data in D_T . Receive reward r_T computed on D'_{dev} . end while for $t = 1, \cdots, T$ do Compute cumulative reward $v_t = r_t + \gamma r_{t+1} + \cdots + \gamma^{T-t} r_T$. $\Theta \leftarrow \Theta + \alpha v_t \sum_{m} \frac{\partial \log P_{\Theta}(a_m | s_m)}{\partial \Theta}$ (1)end for end for **Output**: The NDF policy $A(s, a; \Theta)$.

- Subtract a baseline from reward to reduce estimation variance.

$$\Theta \leftarrow \Theta + \alpha (r_t - b_l) \sum_m \frac{\partial \log P_{\Theta}(a|s_m)}{\partial \Theta}.$$

- Subtract a baseline from reward to reduce estimation variance.

$$\Theta \leftarrow \Theta + \alpha (r_t - b_l) \sum_m \frac{\partial \log P_{\Theta}(a|s_m)}{\partial \Theta}.$$

- The baseline is a running average of previous rewards.

- Subtract a baseline from reward to reduce estimation variance.

$$\Theta \leftarrow \Theta + \alpha (r_t - b_l) \sum_m \frac{\partial \log P_{\Theta}(a|s_m)}{\partial \Theta}.$$

- The baseline is a running average of previous rewards.
- The reward is validation accuracy of the base model.

ТШ

Experiments Setup

- Performance comparisons conducted with 3 techniques
 - Self Paced Learning
 - RandDrop
 - Unfiltered SGD

ТШ

Experiments Setup

- Performance comparisons conducted with 3 techniques
 - Self Paced Learning
 - RandDrop
 - Unfiltered SGD
- NDF a 3 layer NN.

ТUП

Experiments Setup

- Performance comparisons conducted with 3 techniques
 - Self Paced Learning
 - RandDrop
 - Unfiltered SGD
- NDF a 3 layer NN.
- Models only updated after M samples are accumulated.
 - Ensures that convergence speed is only affected by data quality.

Experiment 1: MLP for MNIST

A 3-layer FF NN with tanh activation and cross-entropy loss.

Experiment 2: CNN for CIFAR-10

ResNet with Momentum-SGD.

Exp 3: RNN for IMDB sentiment classification

An LSTM fed into Logistic Regression for sentiment classification with Adadelta optimizer.

Discussion

- A good data selection mechanism can accelerate model convergence.

Discussion

- A good data selection mechanism can accelerate model convergence.
- Data selection policy can be case dependent, it needs to adapt to the data and model.

ТЛП

Discussion

- A good data selection mechanism can accelerate model convergence.
- Data selection policy can be case dependent, NDF adapts to the data and model.
- Compared to heuristic techniques NDF performs better.

Discussions

- Can the NDF policy learning be improved?

ТШ

Discussions

- Can the NDF policy learning be improved?
 - 'Proximal Policy Optimization' (Schulman et al.),
 - 'Actor-Critic' (Konda et al.)
 - 'Q-Learning' (Watkins et al.).

Questions?

Muhammad Shahbal Khan | Recent Trends in Automated Machine Learning