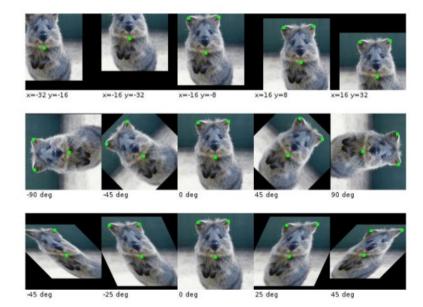


AutoAugment: Learning Augmentation Strategies from Data

Ahmed Agha AutoML Seminar 22.05.2019

Data Augmentation

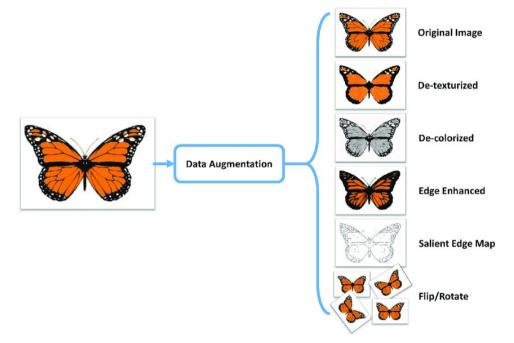

- Effictive method to increase diversity and amount of data

- Helps network to learn about invariances in the data domain

Affine: Shear

Affine: Rotate

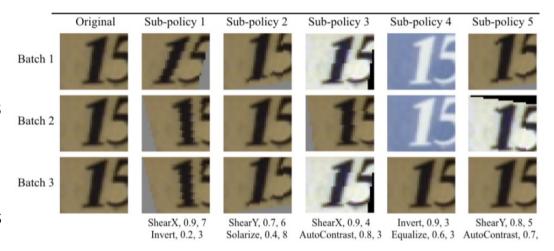
Affine: Translate



Data Augmentation

- Especially important in small or unbalanced datasets

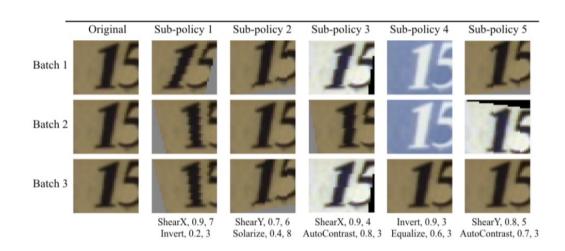
Data augmentation operations are dataset dependant



AutoAugment

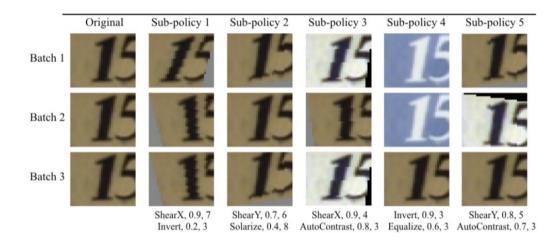
Search Space

- Search space contains different augmentation policies
- Policy contains of multiple sub-policies
- Subpolicy consists of:
 - Two image processing operations
 - Probability of operations
 - Magnitude



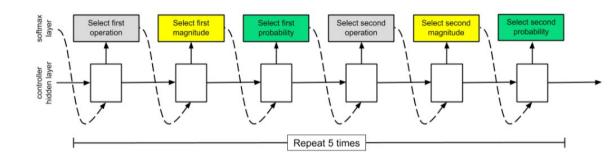
Search Space

 For every image in mini batch a sub-policy is choosen


Same sub-policy may produce two different results

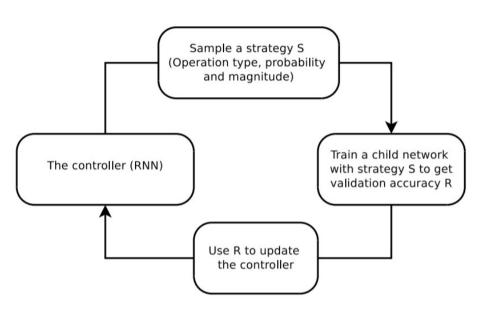
Search Space

- Discrete search space:
 - 16 operations
 - Probablity discretized tino 10 Values
 - Magnitude value discretized into 11 values
- Search space of (16x10x11)^10



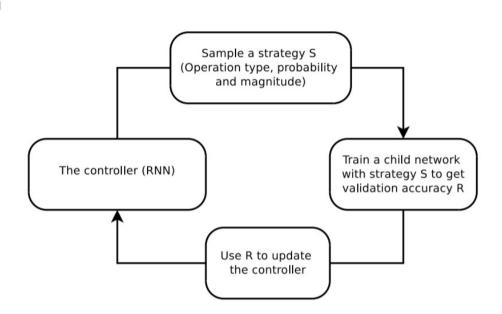
Search algorithm

 The search algorithm consists of a controller, which is a recurrent neural network


 Controller RNN trained using Proximal Policy Optimization algorithm

Training

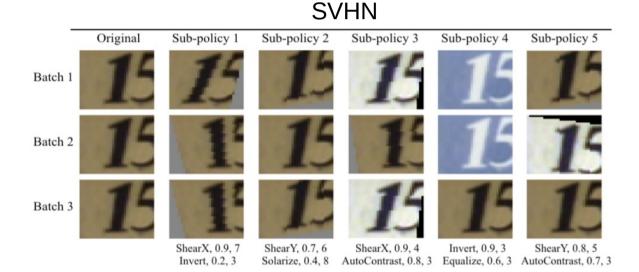
- A child Network with fixed architecture is used for every policy
- A child neural network is trained for every policy
- Child model evaluated on validation set returning accuracy R



Training

 Training the child network with augmentation policy S Returning reward R

- R is fed to the proximal poliy optimization


 Top 5 policies are concatenated to form one policy with 25 subpolicies

AutoAugment in different datasets

Geometry based policies are learned

AutoAugment in different datasets

Color based policies are learned

Original Sub-policy 1 Sub-policy 2 Sub-policy 3 Sub-policy 4 Sub-policy 5 Batch 1 Batch 2 Batch 3 Equalize, 0.4, 4 Solarize, 0.6, 3 Posterize, 0.8, 5 Rotate, 0.2, 3 Equalize, 0.6, 8 Rotate, 0.8, 8 Equalize, 0.6, 7 Equalize, 1.0, 2 Solarize, 0.6, 8 Posterize, 0.4, 6

ImageNet

Results

- CIFAR 10 : Decreasing state of the art error rate by 0.6%

- SVHN : Decreasing state of the art error rate by 0.2%

Dataset	Model	Baseline	Cutout [12]	AutoAugment
CIFAR-10	Wide-ResNet-28-10 [67]	3.9	3.1	2.6 ± 0.1
	Shake-Shake (26 2x32d) [17]	3.6	3.0	2.5 ± 0.1
	Shake-Shake (26 2x96d) [17]	2.9	2.6	2.0 ± 0.1
	Shake-Shake (26 2x112d) [17]	2.8	2.6	1.9 ± 0.1
	AmoebaNet-B (6,128) [48]	3.0	2.1	1.8 ± 0.1
	PyramidNet+ShakeDrop [65]	2.7	2.3	$\boldsymbol{1.5 \pm 0.1}$
Reduced CIFAR-10	Wide-ResNet-28-10 [67]	18.8	16.5	14.1 ± 0.3
	Shake-Shake (26 2x96d) [17]	17.1	13.4	10.0 ± 0.2
CIFAR-100	Wide-ResNet-28-10 [67]	18.8	18.4	17.1 ± 0.3
	Shake-Shake (26 2x96d) [17]	17.1	16.0	14.3 ± 0.2
	PyramidNet+ShakeDrop [65]	14.0	12.2	10.7 ± 0.2
SVHN	Wide-ResNet-28-10 [67]	1.5	1.3	1.1
	Shake-Shake (26 2x96d) [17]	1.4	1.2	1.0
Reduced SVHN	Wide-ResNet-28-10 [67]	13.2	32.5	8.2
Control of the Contro	Shake-Shake (26 2x96d) [17]	12.3	24.2	5.9
·-				

Experiments

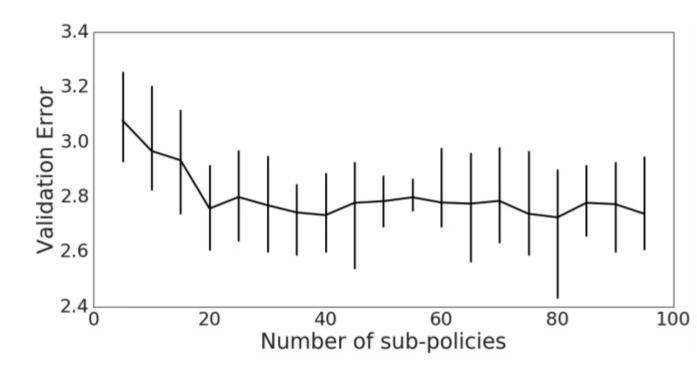
Policy transferability

- FGFV datasets small number of samples high number of classes
- Using AutoAugment could be resource intensive
- Transfer policies from one dataset to another could save lots of compute

Dataset	Train Size	Classes	Baseline	AutoAugment- transfer
Oxford 102	2,040	102	6.7	4.6
Flowers [43]				
Caltech-101 [15]	3,060	102	19.4	13.1
Oxford-IIIT	3,680	37	13.5	11.0
Pets [14]				
FGVC	6,667	100	9.1	7.3
Aircraft [38]				
Stanford	8,144	196	6.4	5.2
Cars [27]				

AutoAugment vs. Randomly chosen policies

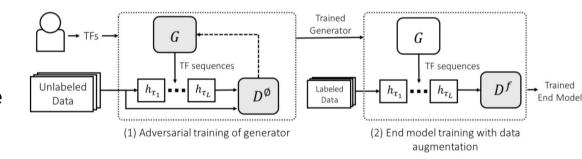
- Randomizing probabilities and magnitudes led to 0.4% higher error rate on CIFAR10
- Using random policies was slightly worse than using random probabilities and magnitudes
- Using policies in search space superior to using baseline augmentations
- Learned probabilities and magnitudes provide better results


Influence of number of training steps

- Stochastic application of sub-policies during training
- Each transformation has its own probability
- A certain number of epochs per sub-policy for AutoAugment to be effective.

Changing number of policies

 Increasing number of subpolicies leads to improvents till up to 20 subpolicies



Data augmentation using GANS

 A generator learns to propose augmentation policy (a sequence of image processing operations) to fool the discriminator

- The method tries to make sure the augmented images are similar to the current training images.

Comparison with data augmentation using GANs

 AutoAugment tries to optimize the validation accuracy directly leading to bigger improvment

Method	Baseline	Augmented	Improvement Δ
LSTM [47]	7.7	6.0	1.6
MF [47]	7.7	5.6	2.1
AutoAugment	7.7	4.5	3.2
(ResNet-32)			
AutoAugment	6.6	3.6	3.0
(ResNet-56)			

Thanks for your Attention!