Asynchronous Methods for Deep Reinforcement Learning

Dominik Winkelbauer
State \(s \)

Action \(a \)

Reward \(r \)

Policy \(\pi \)

Value \(v \)

Action value \(q \)

\[
V^\pi(s) = \mathbb{E}[R_t | s_t = s]
\]

Example:

\[
V^\pi(s_t) = 0.8 \times 0.1 \times (-1) + \\
0.8 \times 0.9 \times 2 + \\
0.2 \times 0.5 \times 0 + \\
0.2 \times 0.5 \times 1 = 1.46
\]

Value function:

Action value function:

\[
Q^\pi(s, a) = \mathbb{E}[R_t | s_t = s, a]
\]
State s

Action a

Reward r

Policy π

Value v

Action value q

Value function:
$$V^\pi(s) = \mathbb{E}[R_t | s_t = s]$$

Action value function:
$$Q^\pi(s, a) = \mathbb{E}[R_t | s_t = s, a]$$

Optimal action value function:
$$Q^*(s, a) = \max_{\pi} Q^\pi(s, a)$$

$\Rightarrow Q^*(s, a)$ implicitly describes an optimal policy.
Value-based algorithms
- Try to approximate $V^*(s)$ or $Q^*(s, a)$
- Implicitly learn policy

Policy-based algorithms
- Directly learn policy
Q-Learning

• Try to iteratively calculate $Q^*(s, a)$

$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$

• Idea: Use neural network for approximating Q

$L(\theta) = \mathbb{E}[r + \gamma \max_a Q(s', a'; \theta) - Q(s, a; \theta)]$
How to traverse through the environment

• We follow an ϵ-greedy policy with $\epsilon \in [0,1]$

• In every state:
 • Sample random number $k \in [0,1]$
 • If $k > \epsilon$ => choose action with maximum q value
 • else => choose random action

• Exploration vs. Exploitation
Q-Learning with Neural Networks

Use network to traverse through the environment

Agent

Neural Network approximating $Q^*(s,a)$

Train Network with generated data

=> Data is non-stationary => Training with NN is unstable
Playing atari with deep reinforcement learning

Agent

Use network to traverse through the environment

Neural Network approximating $Q^*(s,a)$

Train Network with randomly sampled data

Replay Memory

Store new data in replay memory

\Rightarrow Data is stationary \Rightarrow Training with NN is stable

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan and Riedmiller, Martin
On-policy vs. off-policy

• On-policy: The data which is used to train our policy, has to be generated using the exact same policy.
 => Example: REINFORCE

• Off-policy: The data which is used to train our policy, can also be generated using another policy.
 => Example: Q-Learning
Asynchronous Methods for Deep RL

• Alternative method to make RL work better together with neural networks

Asynchronous Q-Learning

• Combine Idea with Q-Learning
• Generated data is stationary
=> Training is stable
=> No replay memory necessary
=> Data can be used directly while training is still stable
Value-based algorithms
- Try to approximate $V^*(s)$ or $Q^*(s, a)$
- Implicitly learn policy

Policy-based algorithms
- Directly learn policy
REINFORCE:
\[\nabla_{\theta} \log \pi(a_t|s_t, \theta) R_t \]

Sample trajectories and enforce actions which lead to high rewards
REINFORCE:

\[\nabla_\theta \log \pi(a_t | s_t, \theta) \, R_t \]
REINFORCE:
\[\nabla_{\theta} \log \pi(a_t | s_t, \theta) \ R_t \]
Problem: High Variance

| $\nabla \theta_i \log \pi(a_t|s_t, \theta)$ | R_t | $\Delta \theta_i$ |
|--|------|-----------------|
| 0.9 | 500 | 450 |
| 0.2 | 501 | 100,2 |
| -0.3 | 499 | -149,7 |

REINFORCE:

$\nabla \theta \log \pi(a_t|s_t, \theta) R_t$

Subtract baseline:

$\nabla \theta \log \pi(a_t|s_t, \theta) (R_t - b_t(s_t))$
Problem: High Variance

| $\nabla_{\theta_i} \log \pi(a_t | s_t, \theta)$ | A_t | $\Delta \theta_i$ |
|---|-------|------------------|
| 0.9 | 0 | 0 |
| 0.2 | 1 | 0.2 |
| -0.3 | -1 | 0.3 |

REINFORCE:

$$\nabla_{\theta} \log \pi(a_t | s_t, \theta) \, R_t$$

Subtract baseline:

$$\nabla_{\theta} \log \pi(a_t | s_t, \theta) \, (R_t - b_t(s_t))$$

Use value function as baseline:

$$\nabla_{\theta} \log \pi(a_t | s_t, \theta) \, (R_t - V(s_t, \theta_v))$$

$$(R_t - V(s_t, \theta_v))$$

Can be seen as estimate of advantage:

$$A(a_t, s_t) = Q(a_t, s_t) - V(s_t)$$

Actor: policy network
Critic: value network
Update interval

REINFORCE

Actor-critic with advantage
Asynchronous advantage actor-critic (A3C)

- Update local parameters from global shared parameters

- Explore environment according to policy $\pi(a_t|s_t; \theta)$ for N steps

- Compute gradients for every visited state
 - Policy network: $\nabla_{\theta} \log \pi(a_t|s_t, \theta) \ (R_t - V(s_t, \theta_v))$
 - Value network: $\nabla_{\theta_v} (R - V(s_i; \theta_v))^2$

- Update global shared parameters with computed gradients
Disadvantage of A3C

Global network

Agent #1
- Perform steps
- Compute gradients
- Perform steps
- Compute gradients

Agent #2
- Perform steps
- Compute gradients
Synchronous version of A3C => A2C

Global network

Agent #1

- Perform steps
- Compute gradients

Agent #2

- Perform steps
- Compute gradients
- Perform steps
- Compute gradients ...

Advantages of „Asynchronous methods“

• Simple extension
• Can be applied to a big variety of algorithms
• Makes robust NN training possible
• Linear speedup
Advantages of Asynchronous methods

- Simple extension
- Can be applied to a big variety of algorithms
- Makes robust NN training possible
- Linear speedup

Consumed data

Score

Breakout

Training time (hours)