Asynchronous Methods for
Deep Reinforcement Learning

Dominik Winkelbauer

State s
Action a

Reward r

Value v

Action value g

Value function:

V™ (s) = E[R¢|st = s]

Example:

VT(s;) =08*0.1%(—1) +
0.8x0.9 %2+
0.2*%05=0+

0.2x05*1=1.46

Action value function:

Q" (s,a) = E[R¢|s¢ = s,a]

State s
Action a

Reward r

Value v

Action value g

Value function:

V™ (s) = E[R¢|st = s]
Action value function:

Q" (s,a) = E[R¢|s¢ = s,a]

Optimal action value function:

Q*(s,a) = max, Q™ (s,a)

=> Q*(s, a) implicitly describes an
optimal policy

Q-Learning

e Try to iteratively calculate Q*(s, a)

q<1.7
a

S

Q(s,a) «r+ymaxQ(s’,a’)

* |dea: Use neural network for approximating Q

L(B) =E[r+ y max Q(s',a’;8) —Q(s,a;0)]

How to traverse through the environment

* We follow an e—greedy policy with € € [0,1]

* |[n every state:
» Sample random number k € [0,1]
* If kK > € => choose action with maximum q value
* else => choose random action

* Exploration vs. Exploitation

Q-Learning with Neural Networks

Use network to traverse through
the environment

N

Neural Network
Agent approximating
Q*(s,a)

N~

Train Network with generated data

=> Data is non-stationary => Training with NN is instable

Playing atari with deep reinforcement learning

Neural Network
approximating

*
Use network to traverse through Q*(s,a)

the environment
Train Network with randomly

sampled data

Agent

Replay Memory

Store new data in replay memory

=> Data is stationary => Training with NN is stable

On-policy vs. off-policy

* On-policy: The data which is used to train our policy, has to be
generated using the exact same policy.

=> Example: REINFORCE

* Off-policy: The data which is used to train our policy, can also be
generated using another policy.

=> Example: Q-Learning

Asynchronous Methods for Deep RL

* Alternative method to make RL work better together with neural
networks

Agent #1 Agent #2
Data generation Data generation
Gradient computation Gradient computation
One agent:
Data generation
Weight updat
Gradient computation clght Update
Weight update
Agent #3 Agent #4
Data generation Data generation
Gradient computation Gradient computation

Traditional way Asynchronous way

Asynchronous Q-Learning

* Combine Idea with Q-Learning

* Generated data is stationary

=> Training is stable

=> No replay memory necessary

=> Data can be used directly while training is still stable

REINFORCE:

Vg logm(a;|s:, 0) R,

Sample trajectories and
enforce actions which lead
to high rewards

REINFORCE:

Vg logm(as|se, 6) R;

REINFORCE:

Vg logm(as|se, 6) R;

Problem: High Variance

REINFORCE:

Vo, logm(ailss, 0) R; AB;
0.9 500 450
0.2 501 100,2
-0.3 499 -149,7
/7
/
501
\
\
/7
/
> 500

Vg logm(as|se, 6) R;

Substract baseline:

Vg logm(ael|se, 8) (Re— be(se))

Problem: High Variance

REINFORCE:

Vg logm(a;|s:, 0) R,

Substract baseline:

Vo, logm(ailss, 0) AB;
0.9 0
0.2 0.2
-0.3 0.3
501
500

500

Vg logm(ael|se, 8) (Re— be(se))

Use value function as baseline:

Vg logm(aelse, 8) (Re—V (st 6y))

(Re—=V (5t 6y))
Can be seen as estimate of advantage:

A(ag, s¢) = Q(ag, sp) — V(st)

Actor: policy network
Critic: value network

Update interval

REINFORCE

Actor-critic with advantage

O

-

-

Asynchronous advantage actor-critic (A3C)

» Update local parameters from global shared parameters
* Explore environment according to policy w(a;|s¢;) for N steps

 Compute gradients for every visited state
* Policy network: Vg log m(a;|ss, 8) (Ry— V(s 6,,))
* Value network: ng(R —V(s;; 9,,))2

* Update global shared parameters with computed gradients

Disadvantage of A3C

Global network Agent #1 Agent #2

Synchronous version of A3C => A2C

Global network Agent #1 Agent #2

Advantages of ,Asynchronous methods”

e Simple extension

e Can be applied to a big variety of algorithms
* Makes robust NN training possible

* Linear speedup

800

700

600

500

Score
=N
o
o

300

200

100

Breakout

20 30
Consumed data

A3C, 1 threads
A3C, 2 threads
A3C, 4 threads
A3C, 8 threads
A3C, 16 threads

40

H 600

500

200

100

Breakout

A3C, 1 threads
A3C, 2 threads
A3C, 4 threads
A3C, 8 threads
A3C, 16 threads

2 4

—

6 8 10
Training time (hours)

12

14

