
Asynchronous Methods for
Deep Reinforcement Learning

Dominik Winkelbauer

State 𝑠

Action 𝑎

Reward 𝑟

Policy 𝜋

Value 𝑣

Action value 𝑞

1

0

2

-1

0.2

0.8

0.5

0.5

0.9

0.1

𝑉𝜋 𝑠 = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠]

𝑄𝜋 𝑠, 𝑎 = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎]

𝑉𝜋 𝑠𝑡 = 0.8 ∗ 0.1 ∗ −1 +
0.8 ∗ 0.9 ∗ 2 +
0.2 ∗ 0.5 ∗ 0 +
0.2 ∗ 0.5 ∗ 1 = 1.461.46

1.7

0.5

2

0

-1

1

1.7

0.5

2

-1

0

1

Value function:

Example:

Action value function:

State 𝑠

Action 𝑎

Reward 𝑟

Policy 𝜋

Value 𝑣

Action value 𝑞

𝑉𝜋 𝑠 = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠]

𝑄𝜋 𝑠, 𝑎 = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎]

Value function:

Action value function:

𝑄∗ 𝑠, 𝑎 = 𝑚𝑎𝑥𝜋𝑄
𝜋 𝑠, 𝑎

Optimal action value function:

1

0

2

-1

?

?

?

?

?

?

2

1

2

-1

0

1

=> 𝑄∗ 𝑠, 𝑎 implicitly describes an
optimal policy

Value-based algorithms

- Try to approximate 𝑉∗ 𝑠 or
𝑄∗ 𝑠, 𝑎

- Implicitly learn policy

Policy-based algorithms

- Directly learn policy

Q-Learning

• Try to iteratively calculate 𝑄∗(𝑠, 𝑎)

• Idea: Use neural network for approximating Q

𝐿 𝜃 = 𝔼[𝑟 + 𝛾max
𝑎

𝑄 𝑠′, 𝑎′; 𝜃 − 𝑄 𝑠, 𝑎; 𝜃]

𝑄 𝑠, 𝑎 ⟵ 𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′)

𝑠 𝑠′

𝑎

= 0.5

q = 0.5

q = 1.2

q = -1

𝑞 ⟵1.7

𝑟

How to traverse through the environment

• We follow an 𝜖–greedy policy with 𝜖 ∈ 0,1

• In every state:
• Sample random number 𝑘 ∈ 0,1

• If 𝑘 > 𝜖 => choose action with maximum q value

• else => choose random action

• Exploration vs. Exploitation

Q-Learning with Neural Networks

Neural Network
approximating

Q*(s,a)

Agent

Use network to traverse through
the environment

Train Network with generated data

=> Data is non-stationary => Training with NN is instable

Playing atari with deep reinforcement learning

Neural Network
approximating

Q*(s,a)

Agent

Use network to traverse through
the environment

Train Network with randomly
sampled data

Replay Memory

Store new data in replay memory

=> Data is stationary => Training with NN is stable

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan and Riedmiller, Martin

On-policy vs. off-policy

• On-policy: The data which is used to train our policy, has to be
generated using the exact same policy.

=> Example: REINFORCE

• Off-policy: The data which is used to train our policy, can also be
generated using another policy.

=> Example: Q-Learning

Asynchronous Methods for Deep RL

• Alternative method to make RL work better together with neural
networks

Data generation

Gradient computation

Weight update

One agent:

Data generation

Gradient computation

Agent #1

Data generation

Gradient computation

Agent #2

Data generation

Gradient computation

Agent #3

Data generation

Gradient computation

Agent #4

Weight update

Traditional way Asynchronous way

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D. & Kavukcuoglu, K. (ICML, 2016)

Asynchronous Q-Learning

• Combine Idea with Q-Learning

• Generated data is stationary

=> Training is stable

=> No replay memory necessary

=> Data can be used directly while training is still stable

Value-based algorithms

- Try to approximate 𝑉∗ 𝑠 or
𝑄∗ 𝑠, 𝑎

- Implicitly learn policy

Policy-based algorithms

- Directly learn policy

1

0

2

-1

0.2

0.8

0.5

0.5

0.9

0.1

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡

REINFORCE:

Sample trajectories and
enforce actions which lead
to high rewards

1

0

2

-1

0.2

0.8

0.5

0.5

0.9

0.1

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡

REINFORCE:

1

0

2

-1

0.2

0.8

0.5

0.5

0.9

0.1

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡

REINFORCE:

Problem: High Variance

∇𝜃𝑖 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡 Δ𝜃𝑖

0.9 500 450

0.2 501 100,2

-0.3 499 -149,7

499

500

501

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡

REINFORCE:

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 (𝑅𝑡− 𝑏𝑡(𝑠𝑡))
Substract baseline:

0.33

0.33

0.33

Problem: High Variance

∇𝜃𝑖 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝐴𝑡 Δ𝜃𝑖

0.9 0 0

0.2 1 0.2

-0.3 -1 0.3

499

0.33

500

501

0.33

0.33

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 𝑅𝑡

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 (𝑅𝑡− 𝑏𝑡(𝑠𝑡))

∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 (𝑅𝑡− 𝑉(𝑠𝑡 , 𝜃𝑣))

REINFORCE:

Substract baseline:

Use value function as baseline:

Can be seen as estimate of advantage:
𝐴 𝑎𝑡 , 𝑠𝑡 = 𝑄 𝑎𝑡 , 𝑠𝑡 − 𝑉(𝑠𝑡)

Actor: policy network
Critic: value network

500

(𝑅𝑡−𝑉(𝑠𝑡 , 𝜃𝑣))

Update interval

REINFORCE

…

Actor-critic with advantage

100.10

0.10

0.6

Asynchronous advantage actor-critic (A3C)

• Update local parameters from global shared parameters

• Explore environment according to policy 𝜋(𝑎𝑡|𝑠𝑡; 𝜃) for N steps

• Compute gradients for every visited state
• Policy network: ∇𝜃 log 𝜋 𝑎𝑡 𝑠𝑡 , 𝜃 (𝑅𝑡− 𝑉(𝑠𝑡 , 𝜃𝑣))

• Value network: ∇𝜃𝑣 𝑅 − 𝑉 𝑠𝑖; 𝜃𝑣
2

• Update global shared parameters with computed gradients

Global network Agent #1 Agent #2

Perform steps

Compute
gradients

Perform steps

Compute
gradients

Disadvantage of A3C

Perform steps

Compute
gradients

Global network Agent #1

…

Agent #2

Perform steps

Compute
gradients

Perform steps

Compute
gradients
…

Perform steps

Compute
gradients

Synchronous version of A3C => A2C

Perform steps

Compute
gradients

Advantages of „Asynchronous methods“

• Simple extension

• Can be applied to a big variety of algorithms

• Makes robust NN training possible

• Linear speedup

Advantages of „Asynchronous methods“

• Simple extension

• Can be applied to a big variety of algorithms

• Makes robust NN training possible

• Linear speedup

Consumed data

