Asynchronous Methods for Deep Reinforcement Learning

Dominik Winkelbauer

State *s*

Value function:

Action *a*

 $V^{\pi}(s) = \mathbb{E}[R_t | s_t = s]$

Reward r

Example:

Policy π

Value v

 $V^{\pi}(s_t) = 0.8 * 0.1 * (-1) + 0.8 * 0.9 * 2 +$

0.2 * 0.5 * 0 +

0.2 * 0.5 * 1 = 1.46

Action value q

Action value function:

 $Q^{\pi}(s, a) = \mathbb{E}[R_t | s_t = s, a]$

State *s*

Value function:

Action *a*

 $V^{\pi}(s) = \mathbb{E}[R_t | s_t = s]$

Reward *r*

Action value function: $Q^{\pi}(s, a) = \mathbb{E}[R_t | s_t = s, a]$

Policy π

Optimal action value function:

Value v

 $Q^*(s,a) = max_{\pi}Q^{\pi}(s,a)$

Action value q

=> $Q^*(s, a)$ implicitly describes an optimal policy

Value-based algorithms

- Try to approximate $V^*(s)$ or $Q^*(s,a)$
- Implicitly learn policy

Policy-based algorithms

- Directly learn policy

Q-Learning

• Try to iteratively calculate $Q^*(s,a)$ q=0.5 q=0.5 q=0.5 q=1.2 q=

Idea: Use neural network for approximating Q

$$L(\theta) = \mathbb{E}[r + \gamma \max_{a} Q(s', a'; \theta) - Q(s, a; \theta)]$$

How to traverse through the environment

- We follow an ϵ -greedy policy with $\epsilon \in [0,1]$
- In every state:
 - Sample random number $k \in [0,1]$
 - If $k > \epsilon$ => choose action with maximum q value
 - else => choose random action
- Exploration vs. Exploitation

Q-Learning with Neural Networks

Train Network with generated data

Playing atari with deep reinforcement learning

=> Data is stationary => Training with NN is stable

On-policy vs. off-policy

• On-policy: The data which is used to train our policy, has to be generated using the exact same policy.

=> Example: REINFORCE

 Off-policy: The data which is used to train our policy, can also be generated using another policy.

=> Example: Q-Learning

Asynchronous Methods for Deep RL

 Alternative method to make RL work better together with neural networks

One agent:

Data generation

Gradient computation

Weight update

Traditional way

Asynchronous way

Asynchronous Q-Learning

- Combine Idea with Q-Learning
- Generated data is stationary
- => Training is stable
- => No replay memory necessary
- => Data can be used directly while training is still stable

Value-based algorithms

- Try to approximate $V^*(s)$ or $Q^*(s,a)$
- Implicitly learn policy

Policy-based algorithms

- Directly learn policy

REINFORCE:

 $\nabla_{\theta} \log \pi(a_t|s_t,\theta) R_t$

Sample trajectories and enforce actions which lead to high rewards

REINFORCE:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) R_t$$

REINFORCE:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) R_t$$

Problem: High Variance

$\nabla_{\theta_i} \log \pi(a_t s_t,\theta)$	R_t	$\Delta heta_i$
0.9	500	450
0.2	501	100,2
-0.3	499	-149,7

REINFORCE:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) R_t$$

Substract baseline:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) \ (R_t - b_t(s_t))$$

Problem: High Variance

$\nabla_{\theta_i} \log \pi(a_t s_t,\theta)$	A_t	$\Delta heta_i$
0.9	0	0
0.2	1	0.2
-0.3	-1	0.3

REINFORCE:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) R_t$$

Substract baseline:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) \ (R_t - b_t(s_t))$$

Use value function as baseline:

$$\nabla_{\theta} \log \pi(a_t|s_t,\theta) \ (R_t - V(s_t,\theta_v))$$

$$(R_t - V(s_t, \theta_v))$$

Can be seen as estimate of advantage:

$$A(a_t, s_t) = Q(a_t, s_t) - V(s_t)$$

Actor: policy network

Critic: value network

Update interval

REINFORCE

Actor-critic with advantage

Asynchronous advantage actor-critic (A3C)

Update local parameters from global shared parameters

- Explore environment according to policy $\pi(a_t|s_t;\theta)$ for N steps
- Compute gradients for every visited state
 - Policy network: $\nabla_{\theta} \log \pi(a_t | s_t, \theta) \ (R_t V(s_t, \theta_v))$
 - Value network: $\nabla_{\theta_v} (R V(s_i; \theta_v))^2$
- Update global shared parameters with computed gradients

Disadvantage of A3C

Synchronous version of A3C => A2C

Advantages of "Asynchronous methods"

- Simple extension
- Can be applied to a big variety of algorithms
- Makes robust NN training possible
- Linear speedup

