
Deep Learning on 
graphs
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The domain so far

• Regularity on the domain
– Order of the pixels is important

Your convolution 
filter imposes a 
certain structure
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A new domain

• Rich Information
– 3D Point Location 
– Other features:

• RGB/ Intensity

• Semantic

• Irregularity
– Permutation Invariance

– Transformation Invariance

Point Cloud 
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A new domain

• A citation network
– Each node is a paper
– Connection is a citation

• Similar for:
– Social networks
– Recommender systems

M. Bronstein et al. „Geometric deep learning: going beyond Euclidean data“. IEEE Signal Processing Magazine. 2017
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A graph

• Node: a concept
• Edge: a connection between concepts

Nodes

Edges
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Deep learning on graphs

• Generalizations of neural networks that can operate 
on graph-structured domains:
– Scarselli et al. “The Graph Neural Network Model”. IEEE Trans. Neur. Net 2009.
– Kipf et al. “Semi-Supervised Classification with Graph Convolutional Networks. ICLR 

2016.
– Gilmer et al. “Neural Message Passing for Quantum Chemistry”. ICML 2017
– Battaglia et al. “Relational inductive biases, deep learning, and graph networks”. arXiv

2018 (review paper)

• Key challenges:
– Variable sized inputs (number of nodes and edges)
– Need invariance to node permutations
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General Idea

Graph with optional node and edge feature vectors

Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

Graph with optional node 
and edge feature vectors
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General Idea

Graph with optional node and edge feature vectors

Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/

Graph with optional node 
and edge feature vectors

Each update step is 
understood as a 
“layer” in common 
NNs
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General Idea

Graph with optional node and edge feature vectors

Information propagation across 
the graph for several iterations

Graph with updated context-
aware node and (possibly 

edge) feature vector(s)

Graph with optional node 
and edge feature vectors

Figure credit: https://tkipf.github.io/graph-convolutional-networks/ 9Prof. Leal-Taixé and Prof. Niessner

https://tkipf.github.io/graph-convolutional-networks/


Neural Message Passing

• Notation: 
– Graph: 
– Initial embeddings:

– Node embeddings after    steps: 

• Goal:
– Encode contextual graph 

information in node embeddings 
by iteratively combining 
neighboring nodes’ features

Node embeddings
Edge embeddings
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Neural Message Passing
• At every iteration, every 

node receives features 
from its neighboring 
nodes.

• These features are then 
aggregated with an order 
invariant operation and 
combined with the current 
features with a learnable 
function
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Neural Message Passing

• At every message passing step   , for every node do:

Gilmer et al. “Neural Message Passing for Quantum Chemistry”. ICML 2017

Learnable function (e.g. MLP) with 
shared weights across the entire graph

Aggregation overall all neighbors

Message
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Neural Message Passing

• At every message passing step   , for every node do:

Learnable function (e.g. MLP) with 
shared weights across the entire graph

Gilmer et al. “Neural Message Passing for Quantum Chemistry”. ICML 2017

Embedding 
update
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Neural Message Passing

• At every message passing step   , for every node do:

Most Graph Neural Network Models can be seen as 
specific example of this formulation

Gilmer et al. “Neural Message Passing for Quantum Chemistry”. ICML 2017 14Prof. Leal-Taixé and Prof. Niessner



Neural Message Passing: An Example

Average neighbors’ feature embeddings
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Neural Message Passing: An Example

Learnable matrices, 
shared for all nodes

Non-linearity Combine node features 
with its neighbors’

New message
Previous 

embedding
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Neural Message Passing: An Example

• We can use MLPs or even recurrent networks, 
instead of linear functions

• These are THE SAME for ALL nodes and edges!
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Graph Convolutional Networks

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.

Self loop Per neighbor degree 
normalization
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Graph Convolutional Networks

Same learnable matrix for self-loops and regular neighbors

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.
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Graph Convolutional Networks

Matrix of weights is of size = #channels out x #channels in

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.
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Graph Convolutional Networks

• We want to collect information from our neighbors 
and convert it to a new embedding

Matrix of weights is of size = #channels out x #channels in
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Graph Convolutional Networks

• Unlike a normal image convolutional filter, here the 
neighbors are not regular (as they are in the image 
space), hence I have to do a permutation-invariant 
aggregation operation before the convolution.
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Graph Convolutional Networks

Convolution

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.

Aggregation
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What About Edge Embeddings?
• The framework we’ve presented is only suited to learn 

node embeddings. But what happens if our focus is on 
edge features?

• At least, two options:
– Work on the ‘dual’ or ‘line’ graph

• E.g. Chen et al. “Supervised Community Detection with Line 
Graph Neural Networks”, ICLR 2019.

– Use a more general formulation that admits edge updates
• E.g. Battaglia et al. “Relational inductive biases, deep learning, 

and graph networks”. arXiv 2018
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A More General Framework

• We can divide the propagation process in two steps: 
‘node to edge’ and ‘edge to node’ updates.

Initial Graph ‘Node to edge’ Update ‘Edge to Node’ Update 

Node embeddings
Edge embeddings

Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.  2018 25Prof. Leal-Taixé and Prof. Niessner



‘Node to edge’ updates

• At every message passing step    , first do:

Embedding of node i in 
the precious message 

passing step

Embedding of node 
j in the precious 

message passing 
step

Embedding of 
edge (i,j) in the 

previous message 
passing step
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‘Node to edge’ updates

• At every message passing step    , first do:
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‘Node to edge’ updates

• At every message passing step    , first do:

Learnable function (e.g. 
MLP) with shared 

weights across the 
entire graph
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‘Edge to node’ updates

• After a round of edge updates, each edge 
embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:

message

message
message

Order invariant 
operation (e.g. 

sum, mean, max)

Neighbors of 
node i
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‘Edge to node’ updates

• After a round of edge updates, each edge 
embedding contains information about its pair of 
incident nodes

• Then, edge embeddings are used to update nodes:

Learnable function (e.g. MLP) with shared 
weights across the entire graph

The aggregation 
provides each node 

embedding with 
contextual information 

about its neighbors
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Remarks
• Main goal: obtaining node and edge embeddings that 

contain context information encoding graph topology and 
neighbor’s feature information.

• After repeating the node and edge updates for l steps, 
each node (resp. edge) embedding contains information 
about all nodes (resp. edge) at distance l (resp. l – 1) à
Think of iterations as layers in a CNN

• Observe that all operations used are differentiable, hence, 
MPNs can be used within end-to-end pipelines

• There is vast literature on different instantiations, as well 
as variations of the MPN framework we presented. See 
Battaglia et al. for an extensive review.
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Message Passing 
Networks for 

Computer Vision
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Different challenges

• Multiple objects of the same type
• Heavy occlusions
• Appearance is often very similar

33Prof. Leal-Taixé and Prof. Niessner



Multi-object tracking with graphs

Step 1: Object detection
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Multi-object tracking with graphs

Graphical model

Node
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Multi-object tracking with graphs

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.“ ICCVW2011
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Multi-object tracking with graphs

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.“ ICCVW2011
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Multi-object tracking with graphs

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.“ ICCVW2011

Step 2: 
Data 
association

Step 1: Object detection

38Prof. Leal-Taixé and Prof. Niessner



MOT with MPN: Overview

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, CVPR 2020
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MOT with MPN: Overview
Encode appearance and scene geometry cues into node 

and edge embeddings

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, CVPR 2020
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MOT with MPN: Overview
Propagate cues across the entire graph with neural message passing

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, CVPR 2020
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MOT with MPN: Overview
Learn to directly predict solutions of the tracking graph problem by 

classifying edge embeddings

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, CVPR 2020
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MOT with MPN: Overview
Feature Extraction Learnable Data Association

G. Brasó and L. Leal-Taixé. “Learning a Neural Solver for Multiple Object Tracking”, CVPR 2020
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Feature encoding

• Appearance and geometry encodings

CNN CNNMLP

Node embeddings
Edge embeddings

Appearance Appearance

Geometry

Node Node
Edge
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Feature encoding

• Appearance and geometry encodings

CNN CNNMLP

Relative Box 
Position

Relative Box 
Size

Time 
Difference

Appearance Appearance

Geometry

Node Node

Node embeddings
Edge embeddings

Edge
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Feature encoding

• Appearance and geometry encodings

CNN CNNMLPAppearance Appearance

Node Node

Shared weights for 
all nodes and edges

Geometry

Node embeddings
Edge embeddings

Edge
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Feature encoding

• Goal: propagate these embeddings across the entire 
graph in order to obtain new embeddings encoding 
high-order information among detections
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Time-aware Message Passing

Aggregation of edge 
embeddings  is separated 

between past / future frames

All edge embeddings 
are aggregated at once
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Classifying edges

• After several iterations of message passing, each 
edge embedding contains high-order information 
about other detections

• We feed the embeddings to an MLP that predicts 
whether an edge is active/inactive

Binary cross-entropy
Weight to 

balance active / 
inactive edges

Sum over the last 
steps

Edge predictions (w. sigmoid) at iteration l

49Prof. Leal-Taixé and Prof. Niessner



Obtaining final solutions

• After classifying edges, we get a prediction between 
0 and 1 for each edge in the graph.

• We use a simple rounding scheme to obtain the final 
edge values 0/1 that map to trajectories

• The overall method is reasonably fast (~6 fps) and 
achieves SOTA in the MOT Challenge by a significant 
margin
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Video object segmentation

• Goal: Generate accurate and temporally consistent 
pixel masks for objects in a video sequence.
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Video object segmentation

• Main idea: Model the temporal consistency through a 
Graph Neural Network.

• Each node is a frame, and information is passed 
among frames to obtain a consistent mask as output

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019. 
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Video object segmentation

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019. 

Features extraction with DeepLabV3 
to construct the initial embeddings
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Video object segmentation

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019. 

Message passing with convolutional recurrent networks, since we need 
to preserve the spatial information (we still want to get pixel outputs)
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Video object segmentation

• But each pixel is not equally important, so they 
further propose to use attention à what is that?

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019. 
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Attention
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The problem

• For very long sentences, the score for machine
translation really goes down after 30-40 words. 

Bahdanau et al 2014. Neural machine translation by jointly learning to align and translate.

With attention

Performance 
degradation
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Basic structure of a RNN

• We want to have notion of “time” or “sequence”

Image: Christopher Olah - Understanding LSTMs

Hidden 
state inputPrevious 

hidden 
state
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Basic structure of a RNN

• We want to have notion of “time” or “sequence”

Hidden 
state Parameters to be learned
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Basic structure of a RNN

• We want to have notion of “time” or “sequence”

Hidden 
state

Same parameters for 
each time step = 
generalization!

Output
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Basic structure of a RNN

• Unrolling RNNs Hidden state is the same

Image: Christopher Olah - Understanding LSTMs 61Prof. Leal-Taixé and Prof. Niessner



Basic structure of a RNN

• Unrolling RNNs
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Long-term dependencies

I moved to Germany … so I speak German fluently
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Attention: intuition

I moved to Germany … so I speak German fluently

ATTENTION: Which hidden states are more important to predict my output?
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Attention: intuition

Context

I moved to Germany … so I speak German fluently

↵t,t+1 ↵t+1,t+1

↵1,t+1
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Attention: architecture

• A decoder processes 
the information

• Decoders take as 
input:
– Previous decoder 

hidden state
– Previous output
– Attention

D D D

Context
↵t,t+1

↵t+1,t+1
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Attention

• indicates how much the word in the position    
is important to translate the word in position 

• The context aggregates the attention

• Soft attention: All attention masks alpha sum up to 1

↵1,t+1

t+ 1

t+ 1

ct+1 =
t+1X

k=1

↵k,t+1ak
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Computing the attention mask
• We can train a small neural network

• Normalize

NN

a1

dt

Hidden state of 
the encoder

Previous state of 
the decoder

f1,t+1

↵1,t+1 =
expf1,t+1

Pt+1
k=1 exp

fk,t+1
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Seq2Seq

• How do we translate?
• First read the whole sentence in language 1.
• Afterwards, translate the whole sentence in language 

2.

Sutskever et al. „Sequence to Sequence Learning with Neural Networks“. NIPS 2014
Picture from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention?
• If the sentence is very long, we might have forgotten 

what was said at the beginning.

• Solution: take “notes” of keywords as we read the 
sentence in language 1.

• Use attention! 
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
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Transformers

• What if we could get rid of the recurrent architecture 
and use only attention?

• All the memory problems of RNNs could disappear
• No RNN, no CNN, just attention!

• Current state-of-the-art in NLP!

A. Vaswani et al. „Attention is all you need“. NeurIPS 2017 77Prof. Leal-Taixé and Prof. Niessner



Transformers

Image: https://graphdeeplearning.github.io/post/transformers-are-gnns/ 78Prof. Leal-Taixé and Prof. Niessner



Transformers

• Wait, what does this remind you of?

Image: https://graphdeeplearning.github.io/post/transformers-are-gnns/ 79Prof. Leal-Taixé and Prof. Niessner



Transformers

• Broadly speaking, Transformers are based on Graph 
Attention Networks (GAT)

• GAT replace the aggregation operation of GNN 
(usually a summation) by a weighted sum, i.e., an 
attention mechanism

Image: https://graphdeeplearning.github.io/post/transformers-are-gnns/ 80Prof. Leal-Taixé and Prof. Niessner



Attention for vision
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Why do we need attention?

BIRD

• We use the whole image to make the classification

• Are all pixels equally important?
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Why do we need attention?
• Wouldn’t it be easier and computationally more efficient 

to just run our classification network on the patch?
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Image captioning

Xu et al 2015. Show attention and tell: neural image caption generation with visual attention.
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Image captioning
• Input: image
• Output: a sentence describing the image. 
• Encoder: a classification CNN (VGGNet, AlexNet). This 

computes a feature maps over the image. 
• Decoder: an attention-based RNN

– In each time step, the decoder computes an attention
map over the entire image, effectively deciding which
regions to focus on. 

– It receives a context vector, which is the weighted
average of the conv net features.
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Conventional captioning

Encoder Decoder

Image from: https://blog.heuritech.com/2016/01/20/attention-mechanism/

LSTM only 
sees the 
image once!
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Attention mechanism

A girl is throwing a frisbee in the park 
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Attention mechanism

A girl is throwing a frisbee in the park 
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Attention mechanism

A girl is throwing a frisbee in the park 
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Attention mechanism

A girl is throwing a frisbee in the park
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Attention mechanism

y": Output of encoder are 
the image features 
which still retain spatial 
information (no FC layer!)

Z":Output of attention 
model

h": Hidden state of LSTM
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Attention mechanism

How does the attention 
model look like?
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Attention model

• Attention architecture

Image: https://blog.heuritech.com/2016/01/20/attention-mechanism/

Any past 
hidden 
state

Visual features

Output attention
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Attention model

• Inputs = feature descriptor for each image patch
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Attention model

• Inputs = feature descriptor for each image patch

Still related to the 
spatial location of 
the image
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Attention model

• We want an bounded output !" = tanh ()*+ +(-* ."
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Attention model

• Softmax to create the attention values between 0 
and 1
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Attention model

• Multiplied by the image features à ranking by 
importance
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Hard attention model

• Choosing one of the features by sampling with 
probabilities si
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Types of attention

• Soft attention: deterministic process that can be 
backproped

• Hard attention: stochastic process, gradient is 
estimated through Monte Carlo sampling.

• Soft attention is the most commonly used since it can 
be incorporated into the optimization more easily
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Types of attention

• Soft vs hard attention
Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work

In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Soft

Hard
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Image captioning with attention

Xu et al 2015. Show attention and tell: neural image caption generation with visual attention.
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Deep Learning on 
graphs
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Interesting works on attention
• Luong et al, “Effective Approaches to Attentionbased Neural Machine

Translation,” EMNLP 2015
• Chan et al, “Listen, Attend, and Spell”, arXiv 2015 
• Chorowski et al, “Attention-based models for Speech Recognition”, NIPS 

2015
• Yao et al, “Describing Videos by Exploiting Temporal Structure”, ICCV 

2015
• Xu and Saenko, “Ask, Attend and Answer: Exploring Question-Guided

Spatial Attention for Visual Question Answering”, arXiv 2015 
• Zhu et al, “Visual7W: Grounded Question Answering in Images”, arXiv

2015
• Chu et al. „Online Multi-Object Tracking Using CNN-based Single Object

Tracker with Spatial-Temporal Attention Mechanism“. ICCV 2017

104Prof. Leal-Taixé and Prof. Niessner


