Deep Learning on graphs
The domain so far

- Regularity on the domain
 - Order of the pixels is important

Your convolution filter imposes a certain structure
A new domain

- Rich Information
 - 3D Point Location
 - Other features:
 - RGB/Intensity
 - Semantic

- Irregularity
 - Permutation Invariance
 - Transformation Invariance
A new domain

- A citation network
 - Each node is a paper
 - Connection is a citation

- Similar for:
 - Social networks
 - Recommender systems

M. Bronstein et al. „Geometric deep learning: going beyond Euclidean data“. IEEE Signal Processing Magazine. 2017
A graph

- Node: a concept
- Edge: a connection between concepts
Deep learning on graphs

• Generalizations of neural networks that can operate on graph-structured domains:
 – Kipf et al. “Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2016.
 – Battaglia et al. “Relational inductive biases, deep learning, and graph networks”. arXiv 2018 (review paper)

• Key challenges:
 – Variable sized inputs (number of nodes and edges)
 – Need invariance to node permutations
General Idea

Graph with optional node and edge feature vectors

Information propagation across the graph for several iterations

Graph with updated context-aware node and (possibly edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/
General Idea

Each update step is understood as a “layer” in common NNs.

Information propagation across the graph for several iterations

Graph with updated context-aware node and (possibly edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/
General Idea

Graph with optional node and edge feature vectors

Information propagation across the graph for several iterations

Graph with updated context-aware node and (possibly edge) feature vector(s)

Figure credit: https://tkipf.github.io/graph-convolutional-networks/
Neural Message Passing

• Notation:
 – Graph: $G = (V, E)$
 – Initial embeddings: $h_{i,j}^{(0)}, (i, j) \in E \quad h_{i}^{(0)}, i \in V$
 – Node embeddings after l steps: $h_{i}^{(l)}, i \in V$

• Goal:
 – Encode contextual graph information in node embeddings by iteratively combining neighboring nodes’ features
Neural Message Passing

- At every iteration, every node receives features from its neighboring nodes.
- These features are then aggregated with an order invariant operation and combined with the current features with a learnable function.
Neural Message Passing

- At every message passing step l, for every node do:

$$m_v^{(l+1)} = \sum_{u \in N_v} M^{(l)}(h_u^{(l)}, h_v^{(l)}, h_{(u,v)}^{(0)})$$

Message

Learnable function (e.g. MLP) with shared weights across the entire graph

Aggregation overall all neighbors
Neural Message Passing

- At every message passing step l, for every node do:

$$m_v^{(l+1)} = \sum_{u \in N_v} M^{(l)}(h_u^{(l)}, h_v^{(l)}, h_{(u,v)}^{(0)})$$

$$h_v^{(l+1)} = U^{(l)}(h_v^{(l)}, m_v^{(l+1)})$$

Embedding update
Learnable function (e.g. MLP) with shared weights across the entire graph

Gilmer et al. ‘Neural Message Passing for Quantum Chemistry’. ICML 2017
Neural Message Passing

- At every message passing step l, for every node do:

$$m_{v}^{(l+1)} = \sum_{u \in N_v} M^{(l)}(h_u^{(l)}, h_v^{(l)}, h_{(u,v)}^{(0)})$$

$$h_{v}^{(l+1)} = U^{(l)}(h_{v}^{(l)}, m_{v}^{(l+1)})$$

Most Graph Neural Network Models can be seen as specific example of this formulation
Neural Message Passing: An Example

\[m_v^{(l+1)} = \sum_{u \in N_v} \frac{h_u^{(l)}}{|N_v|} \]

Average neighbors' feature embeddings
Neural Message Passing: An Example

\[h_v^{(l+1)} = \sigma \left(W^{(l+1)} m_v^{(l+1)} + B^{(l+1)} h_v^{(l)} \right) \]

- Non-linearity
- Learnable matrices, shared for all nodes
- Combine node features with its neighbors’ previous embedding
Neural Message Passing: An Example

- We can use MLPs or even recurrent networks, instead of linear functions.
- These are THE SAME for ALL nodes and edges!

\[h_v^{(l+1)} = \sigma \left(MLP_1^{(l+1)} m_v^{(l+1)} + MLP_2^{(l+1)} h_v^{(l)} \right) \]
Graph Convolutional Networks

\[m_v^{(l+1)} = \sum_{u \in N_v \cup \{v\}} \frac{h_u^{(l)}}{\sqrt{|N_v||N_u|}} \]

Self loop Per neighbor degree normalization

Kipf and Welling. "Semi-Supervised Classification with Graph Convolutional Networks". ICLR 2016.
Graph Convolutional Networks

\[
m_{v}^{(l+1)} = \sum_{u \in N_{v} \cup \{v\}} \frac{h_{u}^{(l)}}{\sqrt{|N_{v}| \cdot |N_{u}|}}
\]

\[
h_{v}^{(l+1)} = \sigma \left(W^{(l+1)} m_{v}^{(l+1)} \right)
\]

Same learnable matrix for self-loops and regular neighbors

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.
Graph Convolutional Networks

$$m^{(l+1)}_v = \sum_{u \in N_v \cup \{v\}} \frac{h^{(l)}_u}{\sqrt{|N_v||N_u|}}$$

$$h^{(l+1)}_v = \sigma \left(W^{(l+1)} m^{(l+1)}_v \right)$$

Matrix of weights is of size = #channels out x #channels in

Kipf and Welling. "Semi-Supervised Classification with Graph Convolutional Networks". ICLR 2016.
Graph Convolutional Networks

- We want to collect information from our neighbors and convert it to a new embedding

\[h_v^{(l+1)} = \sigma \left(W^{(l+1)} m_v^{(l+1)} \right) \]

Matrix of weights is of size \(#\text{channels out} \times #\text{channels in}\)
Graph Convolutional Networks

\[m_v^{(l+1)} = \sum_{u \in N_v \cup \{v\}} \frac{h_u^{(l)}}{\sqrt{|N_v||N_u|}} \]

- Unlike a normal image convolutional filter, here the neighbors are not regular (as they are in the image space), hence I have to do a permutation-invariant aggregation operation before the convolution.
Graph Convolutional Networks

\[m^{(l+1)}_v = \sum_{u \in N_v \cup \{v\}} \frac{h^{(l)}_u}{\sqrt{|N_v||N_u|}} \]

Aggregation

\[h^{(l+1)}_v = \sigma \left(W^{(l+1)} m^{(l+1)}_v \right) \]

Convolution

Kipf and Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. ICLR 2016.
What About Edge Embeddings?

• The framework we've presented is only suited to learn node embeddings. But what happens if our focus is on edge features?
• At least, two options:
 – Work on the ‘dual’ or ‘line’ graph
 • E.g. Chen et al. “Supervised Community Detection with Line Graph Neural Networks”, ICLR 2019.
 – Use a more general formulation that admits edge updates
 • E.g. Battaglia et al. “Relational inductive biases, deep learning, and graph networks”. arXiv 2018
A More General Framework

- We can divide the propagation process in two steps: ‘node to edge’ and ‘edge to node’ updates.

![Diagram showing initial graph, node to edge update, and edge to node update with node embeddings and edge embeddings highlighted.]
‘Node to edge’ updates

• At every message passing step l, first do:

$$h_{(i,j)}^{(l)} = \mathcal{N}_e \left([h_i^{(l-1)}, h_{(i,j)}^{(l-1)}, h_j^{(l-1)}] \right)$$

Embedding of node i in the precious message passing step

Embedding of edge (i,j) in the previous message passing step

Embedding of node j in the precious message passing step
‘Node to edge’ updates

• At every message passing step l, first do:

$$h_{(i,j)}^{(l)} = \mathcal{N}_e \left(\left[h_i^{(l-1)}, h_{(i,j)}^{(l-1)}, h_j^{(l-1)} \right] \right)$$
‘Node to edge’ updates

- At every message passing step l, first do:

\[h^{(l)}_{(i,j)} = \mathcal{N}_e \left([h^{(l-1)}_i, h^{(l-1)}_{(i,j)}, h^{(l-1)}_j] \right) \]

Learnable function (e.g. MLP) with shared weights across the entire graph
‘Edge to node’ updates

• After a round of edge updates, each edge embedding contains information about its pair of incident nodes

• Then, edge embeddings are used to update nodes:

\[m_i^{(l)} = \Phi \left(\left\{ h_{(i,j)}^{(l)} \right\}_{j \in N_i} \right) \]

Order invariant operation (e.g. sum, mean, max)
‘Edge to node’ updates

• After a round of edge updates, each edge embedding contains information about its pair of incident nodes

• Then, edge embeddings are used to update nodes:

\[
m_i^{(l)} = \Phi \left(\left\{ h_{(i,j)}^{(l)} \right\}_{j \in N_i} \right)
\]

\[
h_i^{(l)} = N_v \left(\left[m_i^{(l)}, h_i^{(l-1)} \right] \right)
\]

Learnable function (e.g. MLP) with shared weights across the entire graph

The aggregation provides each node embedding with contextual information about its neighbors
Remarks

• **Main goal**: obtaining node and edge embeddings that contain *context information* encoding graph topology and neighbor’s feature information.

• After repeating the node and edge updates for l steps, each node (resp. edge) embedding contains information about all nodes (resp. edge) at distance l (resp. $l - 1$) → Think of iterations as layers in a CNN

• Observe that all operations used are differentiable, hence, MPNs can be used within end-to-end pipelines

• There is vast literature on different instantiations, as well as variations of the MPN framework we presented. See Battaglia et al. for an extensive review.
Message Passing Networks for Computer Vision
Different challenges

- Multiple objects of the same type
- Heavy occlusions
- Appearance is often very similar
Multi-object tracking with graphs

Step 1: Object detection
Multi-object tracking with graphs

Node

Graphical model
Multi-object tracking with graphs

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.” ICCVW2011

Prof. Leal-Taixé and Prof. Niessner
Multi-object tracking with graphs

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.” ICCVW2011

Prof. Leal-Taixé and Prof. Niessner
Multi-object tracking with graphs

Step 1: Object detection

Step 2: Data association

L. Leal-Taixé et al. “Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker.” ICCVW2011

Prof. Leal-Taixé and Prof. Niessner
MOT with MPN: Overview

(a) Input (b) Graph Construction + Feature Encoding (c) Neural Message Passing (d) Edge Classification (e) Output

MOT with MPN: Overview

Encode appearance and scene geometry cues into node and edge embeddings.
MOT with MPN: Overview

Propagate cues across the entire graph with neural message passing

G. Brasó and L. Leal-Taixé. "Learning a Neural Solver for Multiple Object Tracking", CVPR 2020
MOT with MPN: Overview
Learn to directly predict solutions of the tracking graph problem by classifying edge embeddings.

G. Brasó and L. Leal-Taixé. "Learning a Neural Solver for Multiple Object Tracking", CVPR 2020
MOT with MPN: Overview

Feature Extraction Learnable Data Association

(a) Input (b) Graph Construction + Feature Encoding (c) Neural Message Passing (d) Edge Classification (e) Output

G. Brasó and L. Leal-Taixé. "Learning a Neural Solver for Multiple Object Tracking", CVPR 2020
Feature encoding

• Appearance and geometry encodings
Feature encoding

- Appearance and geometry encodings

\[
\left(\frac{2(x_j - x_i)}{h_i + h_j}, \frac{2(y_j - y_i)}{h_i + h_j}, \log \frac{h_i}{h_j}, \log \frac{w_i}{w_j}, t_j - t_i \right)
\]

Prof. Leal-Taixé and Prof. Niessner
Feature encoding

• Appearance and geometry encodings

Shared weights for all nodes and edges

Prof. Leal-Taixé and Prof. Niessner
Feature encoding

• **Goal:** propagate these embeddings across the entire graph in order to obtain new embeddings encoding high-order information among detections
Time-aware Message Passing

All edge embeddings are aggregated at once

Aggregation of edge embeddings is separated between past / future frames
Classifying edges

- After several iterations of message passing, each edge embedding contains high-order information about other detections.
- We feed the embeddings to an MLP that predicts whether an edge is active/inactive.

\[
\mathcal{L} = \frac{-1}{|E|} \sum_{l=l_0}^{L} \sum_{(i,j) \in E} w \cdot y_{i,j} \log(\hat{y}^{(l)}_{i,j}) + (1 - y_{i,j}) \log(1 - \hat{y}^{(l)}_{i,j})
\]

- Sum over the last steps
- Weight to balance active/inactive edges
- Binary cross-entropy
Obtaining final solutions

• After classifying edges, we get a prediction between 0 and 1 for each edge in the graph.
• We use a simple rounding scheme to obtain the final edge values 0/1 that map to trajectories

• The overall method is reasonably fast (~6 fps) and achieves SOTA in the MOT Challenge by a significant margin
Video object segmentation

- Goal: Generate accurate and temporally consistent pixel masks for objects in a video sequence.
Video object segmentation

• Main idea: Model the temporal consistency through a Graph Neural Network.
• Each node is a frame, and information is passed among frames to obtain a consistent mask as output

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019.
Video object segmentation

Features extraction with DeepLabV3 to construct the initial embeddings

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019.
Message passing with convolutional recurrent networks, since we need to preserve the spatial information (we still want to get pixel outputs)

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019.
Video object segmentation

- But each pixel is not equally important, so they further propose to use attention → what is that?

W. Wang et al. „Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks“. ICCV 2019.
Attention
• For very long sentences, the score for machine translation really goes down after 30-40 words.
Basic structure of a RNN

• We want to have notion of “time” or “sequence”
Basic structure of a RNN

- We want to have notion of “time” or “sequence”

\[A_t = \theta_c A_{t-1} + \theta_x x_t \]

Parameters to be learned
Basic structure of a RNN

- We want to have notion of “time” or “sequence”

\[A_t = \theta_c A_{t-1} + \theta_x x_t \]

\[h_t = \theta_h A_t \]

Same parameters for each time step = generalization!
Basic structure of a RNN

• Unrolling RNNs

Image: Christopher Olah - Understanding LSTMs
Basic structure of a RNN

- Unrolling RNNs
Long-term dependencies

I moved to Germany ... so I speak German fluently

Prof. Leal-Taixé and Prof. Niessner
Attention: intuition

ATTENTION: Which hidden states are more important to predict my output?

I moved to Germany ... so I speak German fluently

Prof. Leal-Taixé and Prof. Niessner
Attention: intuition

I moved to Germany ... so I speak German fluently
Attention: architecture

- A decoder processes the information

- Decoders take as input:
 - Previous decoder hidden state
 - Previous output
 - Attention

Prof. Leal-Taixé and Prof. Niessner
Attention

- $\alpha_{1,t+1}$ indicates how much the word in the position 1 is important to translate the word in position $t + 1$

- The context aggregates the attention

$$c_{t+1} = \sum_{k=1}^{t+1} \alpha_{k,t+1} a_k$$

- **Soft** attention: All attention masks alpha sum up to 1
Computing the attention mask

- We can train a small neural network

\[a_{1,t+1} = \frac{\exp f_{1,t+1}}{\sum_{k=1}^{t+1} \exp f_{k,t+1}} \]

Previous state of the decoder

Hidden state of the encoder

Prof. Leal-Taixé and Prof. Niessner
Seq2Seq

- How do we translate?
- First read *the whole* sentence in language 1.
- *Afterwards*, translate the whole sentence in language 2.

Sutskever et al. "Sequence to Sequence Learning with Neural Networks*. NIPS 2014

Picture from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
Seq2Seq + Attention?

• If the sentence is very long, we might have forgotten what was said at the beginning.

• Solution: take “notes” of keywords as we read the sentence in language 1.

• Use attention!
Seq2Seq + Attention

Animation from: https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
• What if we could get rid of the recurrent architecture and use only attention?
• All the memory problems of RNNs could disappear
• No RNN, no CNN, just attention!
• Current state-of-the-art in NLP!
Transformers

Prof. Leal-Taixé and Prof. Niessner

Image: https://graphdeeplearning.github.io/post/transfomers-are-gnns/
Transformers

• Wait, what does this remind you of?

Translation?
Sentiment?
Next word?
Part-of-speech tags?

Prof. Leal-Taixé and Prof. Niessner

Image: https://graphdeeplearning.github.io/post/transformers-are-gnns/
Transformers

- Broadly speaking, Transformers are based on Graph Attention Networks (GAT)
- GAT replace the aggregation operation of GNN (usually a summation) by a weighted sum, i.e., an attention mechanism
Attention for vision
Why do we need attention?

• We use the whole image to make the classification

• Are all pixels equally important?
Why do we need attention?

• Wouldn’t it be easier and computationally more efficient to just run our classification network on the patch?
Image captioning

Xu et al 2015. Show attention and tell: neural image caption generation with visual attention.
Image captioning

• Input: image
• Output: a sentence describing the image.
• **Encoder**: a classification CNN (VGGNet, AlexNet). This computes a feature maps over the image.
• **Decoder**: an attention-based RNN
 – In each time step, the decoder computes an attention map over the entire image, effectively deciding which regions to focus on.
 – It receives a context vector, which is the weighted average of the conv net features.
Conventional captioning

Image from: https://blog.heuritech.com/2016/01/20/attention-mechanism/

LSTM only sees the image once!
Attention mechanism

A girl is throwing a frisbee in the park
Attention mechanism

A girl is throwing a frisbee in the park

Prof. Leal-Taixé and Prof. Niessner
Attention mechanism

A girl is throwing a frisbee in the park

Prof. Leal-Taixé and Prof. Niessner
Attention mechanism

A girl is throwing a frisbee in the park

Prof. Leal-Taixé and Prof. Niessner
Attention mechanism

\[y_i \]: Output of encoder are the image features which still retain spatial information (no FC layer!)

\[Z_i \]: Output of attention model

\[h_i \]: Hidden state of LSTM
How does the attention model look like?
Attention model

• Attention architecture

Prof. Leal-Taixé and Prof. Niessner

Image: https://blog.heuritech.com/2016/01/20/attention-mechanism/
Attention model

• Inputs = feature descriptor for each image patch
Attention model

- Inputs = feature descriptor for each image patch

Still related to the spatial location of the image
Attention model

- We want an bounded output

\[m_i = \tanh(W_{cm}c + W_{ym}y_i) \]
Attention model

• Softmax to create the attention values between 0 and 1
Attention model

- Multiplied by the image features → ranking by importance
Hard attention model

- Choosing one of the features by sampling with probabilities s_i
Types of attention

- **Soft attention**: deterministic process that can be backproped

- **Hard attention**: stochastic process, gradient is estimated through Monte Carlo sampling.

- Soft attention is the most commonly used since it can be incorporated into the optimization more easily
Types of attention

- Soft vs hard attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. "soft" (top row) vs "hard" (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

The contributions of this paper are the following:

- We introduce two attention-based image caption generators under a common framework (Sec. 3.1): 1) a "soft" deterministic attention mechanism trainable by standard back-propagation methods and 2) a "hard" stochastic attention mechanism trainable by maximizing an approximate variational lower bound or equivalently by REINFORCE (Williams, 1992).

- We show how we can gain insight and interpret the results of this framework by visualizing "where" and "what" the attention focused on. (see Sec. 5.4)

- Finally, we quantitatively validate the usefulness of attention in caption generation with state of the art performance (Sec. 5.3) on three benchmark datasets: Flickr8k (Hodosh et al., 2013), Flickr30k (Young et al., 2014) and the MS COCO dataset (Lin et al., 2014).
Image captioning with attention

Xu et al. 2015. Show attention and tell: neural image caption generation with visual attention.
Deep Learning on graphs
Interesting works on attention