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What can ML do for us?

« Classification problem

Prof. Leal-Taixé and Prof. Niessner



What can ML do for us?

« Classification problem on ImageNet with thousands
of categoﬂes
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What can ML do for us?

« Performance on ImageNet
— Size of the blobs indicates the number of parameters
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Operations [G-Ops]

A. Canziani et al. ,An Analysis of Deep Neural Network Models for Practical
Applications”. arXivi1605.07678 2016



https://arxiv.org/abs/1605.07678

What can ML do for us?

« Regression problem: pose regression

V4 , \
‘ Pretrained ¥ FC

; network 1 ; . — pER?
o
{ |

Feature extraction Linear regression
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What can ML do for us?

« Regression problem: bounding box regression

Current frame Conv Layers
Search Region

Fully-Connected
Layers

Crop

Predicted location
of target
within search region

What to track
Previous frame Conv Layers

D. Held et al. ,LLearning to Track at 100 FPS with Deep Regression Networks'. ECCV 2016
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What can ML do for us?

« Third type of problems

Classification: person, face, female

Classification: person, face, male

Prof. Leal-Taixé and Prof. Niessner



What can ML do for us?

« Third type of problems

s it the same person?

Prof. Leal-Taixé and Prof. Niessner



What can ML do for us?

« Third type of problems: Similarity Learning

— Comparison
— Ranking

Prof. Leal-Taixé and Prof. Niessner



Similarity Learning: when and why?

« Application: unlocking your iIPhone with your face

Traning

Prof. Leal-Taixé and Prof. Niessner
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Similarity Learning: when and why?

« Application: unlocking your iIPhone with your face

YES |
Testing

Can be solved as a

s classification problem

Prof. Leal-Taixé and Prof. Niessner
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Similarity Learning: when and why?

« Application: face recognition system so students can
enter the exam room without the need for ID check

Person 1

franing  person 2

Person 3

Prof. Leal-Taixé and Prof. Niessner
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Similarity Learning: when and why?

« Application: face recognition system so students can
enter the exam room without the need for ID check

What is the problem
with this approach?

Scalability — we need to retrain our model every
time a new student is registered to the course



Similarity Learning: when and why?

« Application: face recognition system so students can
enter the exam room without the need for ID check

Can we train one
model and use it every
year?

Prof. Leal-Taixe and Prof. Niessner
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Similarity Learning: when and why?

« [earn a similarity function

High similarity
score

Low similarity
score

y

Prof. Leal-Taixé and Prof. Niessner



Similarity Learning: when and why?

e [earn a similarity function: testing

Not the same
person

16



Similarity Learning: when and why?

« [earn a similarity function

Same person d(A, B) T

rof, Leal-Taixé and Prof. Niessner
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Similarity learning

« How do we train a network to learn similarity?

Prof. Leal-Taixé and Prof. Niessner
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Similarity learning

« How do we train a network to learn similarity”?

@ Representation
. . of my face In
128 values

Drof Leal-Taive and Prof Niessner  laigman et al. ,DeepFace: closing the gap to human level performance”. CVPR 2014 -




Similarity learning

« How do we train a network to learn similarity?

Drof | eal-Taive and Prof Niessner  1aigman et al. ,DeepFace: closing the gap to human level performance’. CVPR 2014 o



Similarity learning

¢ Slamese network = shared weights

B |\
— | — @

o I
|/

Drof Leal-Taive and Prof Niesener  laigman et al. ,DeepFace: closing the gap to human level performance”. CVPR 2014 >




Similarity learning

¢ Slamese network = shared weights

¢ \Xe use the same network to obtain an encoding of
the image f(A)

« T0 be done: compare the encodings

Drof Leal-Taive and Prof Niesener  laigman et al. ,DeepFace: closing the gap to human level performance”. CVPR 2014 -+



Similarity learning
+ Distance function d(A, B) = ||f(A) — f(B)||?

« Training: learn the parameter such that

- If A and B depict the same person, d( A, B) is small

— If A and B depict a different person, d( A, B) is large

Prof Leal-Taixe and Prof Niessner  Taigman et al. ,DeepFace: closing the gap to human level performance’. CVPR 2014 -,



Similarity learning

« [Loss function for a positive pair.

- If A and B depict the same person, d( A, B) is small

L(A,B) = [|f(4) - f(B)]I7



Similarity learning

« [Loss function for a negative pair:
— If A and B depict a different person d(A, B) s large

— Better use a Hinge loss:

L(A, B) = max(0,m” — || f(4) — f(B)I)

If two elements are already far away, do
not spend energy in pulling them even
further away



Similarity learning
o Contrastive loss:

L(A, B) = y*[|f(A) = f(B)|I* + (1 — y")maz(0,m* — || f(A) — f(B)|)

\ \

Positive pair, ‘Negative pair
reduce the distance brings the elements
between the further apart up to a
elements margin

Prof Leal-Taixe and Prof. Niessner 27



Similarity learning

« Training the siamese networks

— You can update the weights for each channel
iIndependently and then average them

« This loss function allows us to learn to bring positive
pairs together and negative pairs apart

Prof Leal-Taixe and Prof. Niessner



Triplet Loss



Triplet loss

« Triplet loss allows us to learn a ranking

1 4 :,‘.\" g

Anchor (A) Positive (P) Negative (N)

Wewant [[f(4) — f(P)II® < [[f(A) = F(N)]]7

Schroff et al ,FaceNet: a unified embedding for face recognition and clustering”. CVPR 2015

Prof. Leal-Taixé and Prof. Niessner



o Triplet

Triplet loss

(0ss allows us to learn a ranking

f(A) = F(P)IIF < [If(A) = F(N)I

[f(A) = F(P)IF = |If(A) = F(N)[]* <0

1/

A) = F(P)IIF = [1f(A) = F(N)]]? +;n <0

margin

Schroff et al ,FaceNet: a unified embedding for face recognition and clustering”. CVPR 2015



Triplet loss
o Triplet loss allows us to learn a ranking
[£(A) = F(PIIP < |If(A) = F(N)]]7
[£(A) = F(PI° = [If(A) = fF(VN)]]* <0
[£(A) = FPI* = If(A) = FIN[F+m <0

L(A,P,N) = maz(0,[|f(4) = f(P)II* = [If(4) = F(N)|[* +m)

Schroff et al ,FaceNet: a unified embedding for face recognition and clustering”. CVPR 2015



Triplet loss

« Hard negative mining: training with hard cases

L(A, P,N) =maz(0, || f(A) = f(P)II* = [lf(A) = F(N)]]* +m)

« Trainfor afew epochs
« Choose the hard cases where d(A, P) ~ d(A, N)
« Train with those to refine the distance learned



Triplet loss

Negative
- Negative
Training

Anchor —

Anchor Positive

Positive

Prof. Leal-Taixé and Prof. Niessner 34



Triplet loss: test time

« Just do nearest neighbor search!

Query Retrieval

ﬁ

Prof. Leal-Taixé and Prof. Niessner
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Triplet Loss Challenges

« Random sampling does not work - the number of
possible triplets is ON"3) so the network would need
to be trained for a very long time,

« Even with hard negative mining, there is the risk of
peing stuck in local minima,



TUm
Several approaches
to Improve similarity
learning



Improving similarity learning

* |Loss
— Contrastive vs. triplet loss

* Sampling:
— Choosing the best triplets to train with, sample the space wisely
- diversity of classes + hard cases

e Ensembles:

— Why not using several networks, each of them trained with a
subset of triplets?

e Can we use a classification loss for similarity learning?

Prof Leal-Taixe and Prof. Niessner



L osses:. interesting Works

- Wang et al,, Deep metric learning with angular loss, (ICCV
2017)

- Yuetal, Correcting the triplet selection bias for triplet loss,
(ECCV 2018)

Prof. Leal-Taixe and Prof. Niessner



Improving similarity learning

¢ Sampling:
— Choosing the best triplets to train with, sample the space wisely
- diversity of classes + hard cases

Prof. Leal-Taixé and Prof. Niessner
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Sampling: Hierarchical Triplet Loss

 Build a hierarchical tree where the leaves of the tree

represent the image classes. Recursively merge
them until you reach the root node

Prof. Leal-Taixé and Prof. Niessner

Ge et al., Deep Metric Learning with Hierarchical Triplet Loss, ECCV 2018
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HTL: building the tree

* |n order to create the tree, we first define a distance
between classes. Intuition: If the distance is small,
they will be merged in the next level of the tree,

1

2
d(Z%CI):W Z [ri — 75
P jepjeq
~—~ Deep features of images |
The cardinality of classes p and g (how many and |

samples do we have for each class)



HTL: Finding the anchors

« Randomly select ' nodes at the 0" level
— This Is done to preserve class diversity in the mini-batch

OO0OO0OO0O0O00O0

Prof. Leal-Taixé and Prof. Niessner 43



HTL: Finding the anchors

« Randomly select ' nodes at the 0" level
— This Is done to preserve class diversity in the mini-batch

e« mM-1nearest classes at the 0" level are selected for
cach of the ' nodes based on the distance In feature

space.

Prof Leal-Taixe and Prof. Niessner
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HTL: Finding the anchors

« Randomly select ' nodes at the 0" level
— This Is done to preserve class diversity in the mini-batch

e« mM-1nearest classes at the 0" level are selected for
cach of the ' nodes based on the distance In feature

space:
— We want to encourage the model to learn discriminative
features from the visual similar classes.

Prof Leal-Taixe and Prof. Niessner



HTL: Finding the anchors

« Randomly select ' nodes at the 0" level
— This Is done to preserve class diversity in the mini-batch
« m-1nearest classes at the 0" level are selected for
each of the | nodes based on the distance in feature
space:
— We want to encourage the model to learn discriminative
features from the visual similar classes.

« timages per class are randomly collected

t'm’l images in the mini-batch

Prof Leal-Taixe and Prof. Niessner



HTL: Loss formulation

1 .
oz 2, i~ il — e il + ]

s

all the triplets

EJ\/[ —

The margin actually depends on the distances computed on
the hierachical tree. The idea Is that it can adapt to class
distributions and differences of the samples within the classes.

Prof. Leal-Taixe and Prof. Niessner 47



Sampling: interesting works

- Manmatha et al, Sampling matters for deep metric learning,
(ICCV 2017) - original sampling method

- Xu et al, Deep asymmetric metric learning via rich
relationship mining, (CVPR 2019)

- Duan et al, Deep embedding learning with discriminative
sampling policy, (CVPR 2019)

- Wang et al., Ranked list loss for deep metric learning (CVPR
2019)

- Wang et al., Multi-similarity loss with general pair weighting
for deep metric learming (CVPR 2019) - best performance

Prof Leal-Taixe and Prof. Niessner



Improving similarity learning

e Ensembles:

— Why not using several networks, each of them trained with a
subset of triplets?

Prof. Leal-Taixé and Prof. Niessner



-nsembles

« |dea: divide the space into K clusters, and have one
learner per cluster. Conquer

Data Compute Embeddmg R Lo drain .
Fmbt\ddmg ' F : Embedding .
Layer 5 Layer 5
\ \ Y o . i
\‘\"'-4.‘_.0. ot > a Learner |
ClllS[CI’lIlE ~‘ __-*" — Learner 2
iy )
~ ot 0 aantte - Learner K |

oo \ Shared Weights j _________ I
YDivide

Prof. Leal-Taixe and Prof. Niessner Sanakoyeu et al, Divide and Conquer the Embedding Space for Metric Learning, CVPR 2019
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-nsembles: Divide and Conguer

1) Cluster the embedding space in K clusters using K-means.

2) Build K independent learners (fully connected layer) at the top of
the CNN, where each learner corresponds to one cluster - DIVIDE

3) Until convergence, sample each mini-batch from one random
cluster, and update only its corresponding learner,

4) After the network has converged finetune using all learners at the
same time - CONQUER

5) Go back to (1) and repeat several times.

Prof Leal-Taixe and Prof. Niessner



—nsembles: interesting works

- Opitz et al., BIER - Boosting Independent Embeddings Robustly,
(CCV 2017 - train Kindependent networks.

- Elezietal, The Group Loss for Metric Learning, arxXiv 2020 - train
K Independent networks and concatenate their features.

- Yuan et al, Hard-Aware Deeply Cascaded Embedding, CVPR
2017 - concatenate features from different levels of the network

- Wang et al, Ranked list loss for deep metric learning, CVPR 2019 -
concatenate features from different levels of the network.

- Kim et al., Attention-based Ensemble for Deep Metric Learning,
FCCV 2018 - use an attention mechanism such that each learner
looks at different parts of the object.



Improving similarity learning

* Can we use a classification loss for similarity learning?

Prof. Leal-Taixé and Prof. Niessner



Classification loss: interesting works

- Movshovitz-Attias et al.,, No Fuss Distance Metric Learning using
Proxies, ICCV 2017 - learn "proxy’ samples to keep as positives
and negatives in the mini-batch).

- Tehetal, ProxyNCA++ Revisiting and Revitalizing Proxy
Neighborhood Component Analysis, arXiv 2020 - a better way of
using proxies, some of the best results in the field,

- Qian et al, SoftTriple Loss: Deep Metric Learning Without Triplet
Sampling, ICCV 2019 - using multiple centers for class

- Elezietal, The Group Loss for Deep Metric Learning, arXiv 2020 -
refine the softmax probabilities via a dynamical system for better
feature embedding.



Some results

CUB-200-2011 CARS 196 Stanford Online Products
Loss R@1 R@2 R@4 R@8 NMI/R@1 R@2 R@4 R@8 NMI/R@1 R@10 R@100 NMI
Triplet 42,5 55 66.4 T77.2 55.3|51.5 63.8 73.5 824 53.4|66.7 824 91.9 89.5
Lifted Structure | 43.5 56.5 68.5 79.6 56.5|53.0 65.7 76.0 84.3 56.9 [ 62.5 8&0.8 91.9 88.7
Npairs 51.9 64.3 74.9 83.2 60.2 689 789 85.8 90.9 62.7]66.4 829 92.1 87.9

Facility Location| 48.1 61.4 71.8 819 59.2|58.1 70.6 80.3 87.8 59.0|67.0 &83.7 93.2  89.5
Angular Loss 54.7 66.3 76 839 61.1 (714 814 87.5 92.1 63.2|70.9 85.0 93.5  88.6
Proxy-NCA 49.2 619 679 724 59.5|73.2 824 86.4 8.7 649 |73.7 - - 90.6
Deep Spectral 53.2 66.1 76.7 85.2 59.2|73.1 822 89.0 93.0 64.3 |67.6 &3.7 93.3 894
Classification 59.6 72 81.2 834 66.2 |81.7 889 934 96 70.5|73.8 88.1 95 89.8

Bias Triplet 46.6 58.6 70.0 - - |1 79.2 8.7 914 - - |163.0 798 90.7 -
Group Loss 64.3 75.8 84.1 90.5 67.9|83.7 89.9 93.7 96.3 70.7 |75.1 87.5 94.290.8

SoftTriple 65.4 76.4 84.5 904 69.3|84.5 90.7 945 96.9 70.1 783 90.3 95.9 92
HORDE 66.8 77.4 85.1 91 - 862 91.9 951 972 - |80.1 91.3 96.2 -

Prof Leal-Taixe and Prof. Niessner  Jacob et al, Metric Learning With HORDE: High-Order Regularizer for Deep Embeddings, ICCV 2019~ 50



Some results

CUB-200-2011 CARS 196 Stanford Online Products
Loss+Sampling R@1 R@2 R@4 R@8 NMI|R@1 R@2 R@4 R@S8 NMI‘R@I R@10 R@100 NMI
Samp. Matt. 63.6 74.4 83.1 90.0 69.0|79.6 86.5 91.9 95.1 69.1 |72.7 86.2 93.8 90.7
Hier. triplet 57.1 68.8 78.7 86.5 - |81.4 88.0 92.7 95.7 - |74.8 88.3 94.8 -
DAMLRRM 55.1 66.5 76.8 85.3 61.7|73.5 82.6 89.1 93.5 64.2 |69.7 85.2 93.2 88.2
DE-DSP 53.6 65.5 76.9 61.7 - 72.9 81.6 88.8 - 64.4|68.9 &4.0 92.6 89.2
- RLL 1 57.4 69.7 79.2 86.9 63.6| 74 83.6 90.1 94.1 654 |76.1 89.1 95.4 89.7
GPW 65.7 77.0 86.3 91.2 - |84.1 904 94.0 96.5 - |[78.2 90.5 96.0 -
Teacher-Student
RKD 61.4 73.0 819 89.0 - [ 82.3 89.8 942 96.6 - [ 75.1 88.3 95.2 -
Loss+Ensembles
BIER 6 55.3 67.2 76.9 85.1 - 75.0 83.9 90.3 943 - |72.7 86.5 94.0 -
HDC 3 54.6 66.8 77.6 859 - 78.0 8.8 91.1 951 - |[70.1 &4.9 93.2 -
ABE 2 55.7 67.9 783 85.5 - 76.8 849 90.2 940 - |754 88.0 94.7 -
ABE 8 60.6 71.5 79.8 874 - |852 90.5 94.0 96.1 - |76.3 88.4 94.8 -
A-BIER 6 57.5 68.7 783 86.2 - |82.0 89.0 93.2 96.1 - |74.2 86.9 94.0 -
D and C 8 65.9 76.6 844 90.6 69.6 |84.6 90.7 94.1 96.5 70.3|75.9 88.4 94.9 90.2
- RLL 3 [45] 61.3 72.7 82.7 89.4 66.1|82.1 89.3 93.7 96.7 71.8|79.8 91.3 96.3 90.4
Group Loss 66.9 77.1 854 91.5 70.0|88.0 92.5 95.7 97.5 74.2|76.3 88.3 94.6 91.1
HORDE 63.9 75.7 844 91.2 - |88.0 932 96.0 979 - |80.1 91.3 96.2 -

Prof. Leal-Taixé and Prof. Niessner



So, which model to use?

CUB

Concatenated (512-dim) CA RS Concatenated (512-dim)
P@l RP MAPGR P@l RP MAPGR
Pretrained 51.05 2485 14.21 Pretrained 46.89 13.77 5.01

Contrastive 67.21 + 0.49 36.92 + 0.28 26.19 £ 0.28 Contrastive B1.57 £ 0.36 35.72 £ 0.35 2549+ 0.41
Triplet 64.40 = 0.38 34.63 £ 0.36 23.79 £ 0.36 Triplet T7.48 + 0.57 3285 +0.45 2213+ 0.45
ProxyNCA 66.14 = 0.32 35.48 £ (.18 24.56 £ 0.18 ProxyNCA 83.25 + 0.37 36.63 £ 0.34 26.39 £ 0.41
Margin 65.48 + 0.50 35.04 £0.24 24.10 £+ 0.26 Margin B2.08 + 241 AT £ 217 2414 +£2.25
N. Softmax 65.43 +0.23 35.98 £0.22 25.20 +0.21 N. Softmax B3.58 £0.29 36.56 £ 0.19 26.36 £ 0.21
CosFace 67.19 + 0.37 37.36 £ 0.23 26.53 +£ 0.23 CosFace £5.27 + 0.23 36.72 + 0.20 26.86 + 0.22
ArcFace 67.06 = 0.31 37.23 £0.17 26.35 £ 0.17 ArcFace £3.95 + 0.23 35.44 + 0.26 25.24 4+ 0.27
FastAP 63.64 £ 0.24 34.45 £ 0.21 23.71 +£0.20 Fast AP 78.20 £ 0.74 33.39 £ 0.67 22.90 £ 0.69
SNR 67.26 & 0.46 36.86 £ 0.20 26.10 £ 0.22 SNR B1.87 £ 0.35 3540 £ 0.44 25.14 + 0.49
MS 65.03 £+ 0.16 35.91 £0.11 25.16 £ 0.10 MS 85.29 + 0.31 37.96 + 0.63 27.84 £ 0.77
MS+Miner 65.75 = 0.34 35.95 +£0.21 25.21 +£0.22 MS+Miner £4.59 + (.29 37.70 + 0.37 27.59 + 0.43
SoftTriple 66.20 £ 0.37 36.46 £ 0.20 25.64 £ 0.21 Soft Triple 83.66 + 0.22 36.31 + 0.16 26.06 + 0.19

When trained correctly (and using the same backbone, same embedding
space and no extra-tricks to boost the results) the difference in accuracy
between different models is not that large.

Prof. Leal-Taixe and Prof. Niessner Musgrave et al., A Metric Learning Reality Check, arXiv 2020
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Tips and tricks

Simple baselines (contrastive loss, triplet loss and
classification loss) actually perform well when
trained correctly.

Sampling is as important as the choice of loss
function. Every method can be boosted by
devising an intelligent sampling strateqgy.

Some tricks may further improve the results
(temperature for softmax, freezing batch-norm
layers, using multiple centers per class, eto).

Prof. Leal-Taixe and Prof. Niessner
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Tips and tricks

Even naive ensembles may (significantly) boost
performance.

Good out-of-box choices: Proxy-NCA and SoftTriple
Loss =2 they perform well, and do not require a
massive hyperparameter search (@and have code

onlinel).

Contrastive loss and triplet loss give a similarity score in
addition to the feature embedding

Stronger backbone choices (densenet) further improve
the results.

aixe and Prof. Niessner
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Applications In vision



Siamese network on MNIST
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Establishing iImage correspondences

Prof. Leal-Taixé and Prof. Niessner




—stablishing image correspondences

Image from University of Washington

Prof. Leal-Taixe and Prof. Niessner 64



—stablishing image correspondences

« Used in a wide range of Computer Vision applications
— Image stitching or image alignment
— Object recognition
— 3D reconstruction
— Object tracking
— Image retrieval

« Many of these applications are now targeted directly
with Neural Networks as we will see in the course

Prof Leal-Taixe and Prof. Niessner



—stablishing image correspondences

« (Classic method pipeline
— Extract manually designed feature descriptors
« Harris, SIFT, SURF: most are based on image gradients

« They suffer under extreme illumination or viewpoint
changes
« Slow to extract dense features

— Match descriptors from the two images

« Many descriptors are similar, one needs to filter out possible
double matches and keep only reliable ones

Prof. Leal-Taixe and Prof. Niessner Sameer Agarwal et al. ,Building Rome in a Day". ICCV 2009



—stablishing image correspondences

« End-to-end learning for patch similarity

similarity
R T * Fast to allow dense extraction
| esrmera ) * Invariant to a wide array of
: transformations (illumination,
ConvNet

Siamese network

ﬂ _________ év\ viewpoint)

patch 1 patch 2

S. Zagoruyko and N. Komodakis. ,Learning to Compare Image Patches via Convolutional Neural Networks'. CVPR 2015

Prof. Leal-Taixé and Prof. Niessner 67



—stablishing image correspondences

« (Classic Slamese architecture T T R T EEE
— Shared layers :
« Simulated feature extraction

— One decision layer
« Simulates the matching

_2-Ehan_ne_l r;et_wa rﬁ N

patch 1 patch 2

S. Zagoruyko and N. Komodakis. ,Learning to Compare Image Patches via Convolutional Neural Networks'. CVPR 2015

Prof. Leal-Taixé and Prof. Niessner 68



Image retrieval

Generalized Mean

Convolutional layers Pooling Normalization Descriptor

NFl & |-f E 'i =

Positive pair contrastive loss

Siamese learning GeM descriptor

Radenovic et al.. ,Fine-tuning CNN Image Retrieval with No Human Annotation”. TPAMI 2018

Prof. Leal-Taixé and Prof. Niessner 69



Unsupervised learning

« [earning from videos

— Tracking provides the
supervision

— Use those as positive
samples

— Extract random patches
as negative samples

(a) Unsupervised Tracking in Videos

l Learning to Rank l

Conv Conv Conv
Net Net

Query

- N
Y.

Tracked Negative D pistance in deep feature space
(First Frame) (Last Frame) (Random)

(b) Siamese-triplet Network (c) Ranking Objective

Wang and Gupta. ,Unsupervised Learning of Visual Representations using Videos' ICCV 2015

Prof. Leal-Taixé and Prof. Niessner
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Optical flow

* |[nput 2 consecutive images (e.g. from a video)

« Output: displacement of every pixel from image A to
mage B

« Results inthe "perceived’ 2D motion, not the real
motion of the object

Prof. Leal-Taixe and Prof. Niessner
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Prof. Leal-Taixé and Prof. Niessner

Optical flow

/2






Optical flow with CNNs

« End-to-end supervised learning of optical flow

convolutional
network

P. Fischer et al. ,FlowNet: Learning Optical Flow With Convolutional Networks". ICCV 2015

Prof. Leal-Taixé and Prof. Niessner 74



Optical flow with CNNs

FlowNet Learmng Optical Flow with Convolutlonal Networks
A /' '

FlowNet '
P. Fischer
A. Dosavitskiy,

E.llg,

P. Hausser.
C. Hazirbas,
V. Golkov
P.v.d. Smagt.

0. Cremers,

I. Brox

FlowNetS FlowNetC

We train convolutional networks to estimate optical flow.

P. Fischer et al. ,FlowNet: Learning Optical Flow With Convolutional Networks" ICCV 2015

-Taixe and Prof. Niessner 75



FlowNet: architecture 1

« Stack both images = input is now 2 x RGB = 6 channels

e

Prof. Leal-Taixe and Prof. Niessner 76



FlowNet: architecture 2

e Sjamese architecture
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FlowNet : architecture 2

« Two key design choices

How to combine the information
from both images?
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Correlation layer

« Multiplies a feature vector with another feature vector
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» Feature Matching <

Fixed operation,
No learnable
weights!

Matching
Score

/79



Correlation layer

« The matching score represents how correlated these
two feature vectors are
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Correlation layer

« Useful for finding image correspondences

A
Find a
transformation
from image A
3 to Image B

| Rocco et al. "Convolutional neural network architecture for
geometric matching. CVPR 2017.
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Correlation layer

Aligned A (affine) Aligned A (affine+TPS)

l. Rocco et al. "Convolutional neural network architecture for geometric matching. CVPR 2017.
Prof. Leal-Taixe and Prof. Niessner 82



TUTi

Siamese Neural
Networks and
Simitarity Learning



Further references

« Savinov et al. ,Quad-networks: unsupervised learning
to rank for interest point detection” CVPR 2017

e Ristani & Tomasi. ,Features for Multi-Target Multi-
Camera Tracking and Re-ldentification”. CVPR 2018

« Chenetal ,Beyond triplet loss: a deep quadruplet
network for person re-identification”. CVPR 2017
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