

More Generative Models 🕥

Prof. Leal-Taixé and Prof. Niessner

Conditional GANs on Videos

- Challenge:
 - Each frame is high quality, but temporally inconsistent

Video-to-Video Synthesis

• Sequential Generator:

$$p(\tilde{\mathbf{x}}_1^T | \mathbf{s}_1^T) = \prod_{t=1}^T p(\tilde{\mathbf{x}}_t | \tilde{\mathbf{x}}_{t-L}^{t-1}, \mathbf{s}_{t-L}^t).$$

past L generated frames past L source frames (set L = 2)

- Conditional Image Discriminator D_i (is it real image)
- Conditional Video Discriminator D_{ν} (temp. consistency via flow)

Full Learning Objective:

$$\min_{F} \left(\max_{D_{I}} \mathcal{L}_{I}(F, D_{I}) + \max_{D_{V}} \mathcal{L}_{V}(F, D_{V}) \right) + \lambda_{W} \mathcal{L}_{W}(F),$$

Video-to-Video Synthesis

pix2pixHD

d

Video-to-Video Synthesis

- Key ideas:
 - Separate discriminator for temporal parts
 - In this case based on optical flow
 - Consider recent history of prev. frames
 - Train all of it jointly

Similar to "Image-to-Image Translation" (Pix2Pix) [Isola et al.]

Source Sequence

Conditioning Images

Result

Neural Network converts synthetic data to realistic video

Interactive Video Editing

2x speed

Deep Video Portraits: Insights

- Synthetic data for tracking is great anchor / stabilizer
- Overfitting on small datasets works pretty well
- Need to stay within training set w.r.t. motions
- No real learning; essentially, optimizing the problem with SGD

-> should be pretty interesting for future directions

Everybody Dance Now

[Chan et al.'18] Everybody Dance Now

[Chan et al. '18] Everybody Dance Now

Everybody Dance Now

Source Subject

[Chan et al.'18] Everybody Dance Now

Everybody Dance Now

- cGANs work with different input

- Requires consistent input i.e., accurate tracking

Network has no explicit
 3D notion

[[]Chan et al.'18] Everybody Dance Now

Everybody Dance Now: Insights

- Conditioning via tracking seems promising!
 - Tracking quality translates to resulting image quality
 - Tracking human skeletons is less developed than faces
 - Temporally it's not stable... (e.g., OpenPose etc.)
 - Fun fact, there were like 4 papers with a similar same idea that appeared around the same time...

Videos still challenging for cGANs...

Pix2Pix [Isola et al. 2017] ABCEIFEEFEKDKCM ABCEHHJKIN NOPORSTVXVWXYZ NOPCFERVNXV ABCDEFGHIJKLM ABGJEFGEJKIM NOPORSTUVWXYZ NOPOPETWWXYZ ABCDEFGHIJKIM ABCEFLEJ VOPORSTUVWXYZ NO ABCDEFGHIJKL NOPORSUUVWXXCDR ABODERGHLLJ

Deep Voxels

- Main idea for video generation:
 - Why learn 3D operations with 2D Convs !?!?
 - We know how 3D transformations work
 - E.g., 6 DoF rigid pose [R|t]
 - Incorporate these into the architectures
 - Need to be differentiable!
 - Example application: novel view point synthesis
 - Given rigid pose, generate image for that view

Deep Voxels

Simplified overview for novel view synthesis

Deep Voxels

Issue: we don't know the depth for the target!

- -> Per-pixel softmax along the ray
- -> Network learns the depth

Deep Voxels

DeepVoxels

ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM

Best Baseline: Pix2Pix [Isola et al. 2017]

Deep Voxels

Deep Voxels: Insights

- Lifting from 2D to 3D works great
 - No need to take specific care for temp. coherency!
- All 3D operations are differentiable
- Currently, only for novel view-point synthesis
 I.e., cGAN for new pose in a given scene
- But: limited resolution due to dense 3D voxel grid

3D Geometry

Neural Texture

Deferred Neural Rendering

Deferred Neural Rendering

Deferred Neural Rendering

Novel View Synthesis

Scene Editing

Animation Synthesis
Novel View-Point Synthesis

Novel View-Point Synthesis

Scene Editing

Scene Editina

Scene Editina

Animation Synthesis

Deferred Neural Rendering

Animation Synthesis

Deferred Neural Rendering

Animation Synthesis

Big Open Challenges

Big Open Challenges

Big Open Challenges: How much can AI do?

Using a Bounding Box as Proxy

Input UV-Map

Ours

Ground Truth

Big Open Challenges: 3D in Networks

Why learn 3D operations, such as transformations?

-> differentiate known operators

Capsule networks are motivated by inverse graphics [Sabour et al. 17]

Prof. Leal-Taixé and Prof. Niessner

Autoregressive Models

Prof. Leal-Taixé and Prof. Niessner

Autoregressive Models vs GANs

GANs learn implicit data distribution
– i.e., output are samples (distribution is in model)

- Autoregressive models learn an explicit distribution governed by a prior imposed by model structure
 - i.e., outputs are probabilities (e.g., softmax)

- Goal: model distribution of natural images
- Interpret pixels of an image as product of conditional distributions
 - Modeling an image \rightarrow sequence problem
 - Predict one pixel at a time
 - Next pixel determined by all previously predicted pixels
 - ➢ Use a Recurrent Neural Network

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016\$

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

$$x_i \in [0,255]$$

 \rightarrow 256-way softmax

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016)

- Row LSTM model architecture
- Image processed row by row
- Hidden state of pixel depends on the 3 pixels above it
 - Can compute pixels in row in parallel
- Incomplete context for each pixel

- Diagonal BiLSTM model
 architecture
- Solve incomplete context problem
- Hidden state of pixel $p_{i,j}$ depends on $p_{i,j-1}$ and $p_{i-1,j}$
- Image processed by diagonals

- Masked Convolutions
- Only previously predicted values can be used as context
- Mask A: restrict context during 1st conv
- Mask B: subsequent convs
- Masking by zeroing out values

Generated 64x64 images, trained on ImageNet

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]}

PixelCNN

- Row and Diagonal LSTM layers have potentially unbounded dependency range within the receptive field
 - Can be very computationally costly
- ➢ PixelCNN:
 - standard convs capture a bounded receptive field
 - All pixel features can be computed at once (during training)

PixelCNN

- Model preserves spatial dimensions
- Masked convolutions to avoid seeing future context

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0
Mask A				

[Van den Oord et al 20165

Prof. Leal-Taixé and Prof. Niessner

Gated PixelCNN

- Gated blocks
- Imitate multiplicative complexity of PixelRNNs to reduce performance gap between PixelCNN and PixelRNN
- Replace ReLU with gated block of sigmoid, tanh

$$k^{\text{th}} \text{ layer sigmoid}$$

$$y = \tanh(W_{k,f} * x) \odot \sigma(W_{k,g} * x)$$
element-wise product convolution

PixelCNN Blind Spot

5x5 image / 3x3 conv

Receptive Field

Unseen context

http://sergeiturukin.com/2017/02/24/gated-pixelcnn.html

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]

PixelCNN: Eliminating Blind Spot

- Split convolution to two stacks
- Horizontal stack conditions on current row
- Vertical stack conditions on pixels⁻
 above
 Vert

Conditional PixelCNN

- Conditional image generation
- E.g., condition on semantic class, text description

latent vector to be conditioned on

$$y = \tanh\left(W_{k,f} * x + V_{k,f}^T h\right) \odot \sigma\left(W_{k,g} * x + V_{k,g}^T h\right)$$

Conditional PixelCNN

Coral Reef

Sorrel horse

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]

Autoregressive Models vs GANs

- Advantages of autoregressive:
 - Explicitly model probability densities
 - More stable training
 - Can be applied to both discrete and continuous data
- Advantages of GANs:
 - Have been empirically demonstrated to produce higher quality images
 - Faster to train

Autoregressive Models

• State of the art is pretty impressive 🕲

Vector Quantized Variational AutoEncoder

Generating Diverse High-Fidelity Images with VQ-VAE-2 <u>https://arxiv.org/pdf/1906.00446.pdf</u> [Razavi et al. 19]

See you next week 🕲