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Conditional GANs on Videos
• Challenge:

– Each frame is high quality, but temporally inconsistent
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Video-to-Video Synthesis
• Sequential Generator:

• Conditional Image Discriminator 𝐷𝑖 (is it real image)

• Conditional Video Discriminator 𝐷𝑣 (temp. consistency via flow)
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past L source framespast L generated frames

(set L = 2)

Full Learning Objective:



Video-to-Video Synthesis
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Video-to-Video Synthesis
• Key ideas:

– Separate discriminator for temporal parts
• In this case based on optical flow

– Consider recent history of prev. frames

– Train all of it jointly
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Deep Video Portraits

Siggraph’18 [Kim et al 18]: Deep Portraits



Deep Video Portraits

Similar to “Image-to-Image Translation” (Pix2Pix) [Isola et al.]

Siggraph’18 [Kim et al 18]: Deep Portraits



Deep Video Portraits
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Deep Video Portraits

Siggraph’18 [Kim et al 18]: Deep Portraits

Neural Network converts synthetic data to realistic video



Deep Video Portraits
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Deep Video Portraits
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Deep Video Portraits

Siggraph’18 [Kim et al 18]: Deep Portraits



Deep Video Portraits

Siggraph’18 [Kim et al 18]: Deep Portraits

Interactive Video Editing



Deep Video Portraits: Insights

• Synthetic data for tracking is great anchor / stabilizer

• Overfitting on small datasets works pretty well

• Need to stay within training set w.r.t. motions

• No real learning; essentially, optimizing the problem 
with SGD
-> should be pretty interesting for future directions

Siggraph’18 [Kim et al 18]: Deep Portraits



Everybody Dance Now

[Chan et al. ’18] Everybody Dance Now



Everybody Dance Now
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Everybody Dance Now
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Everybody Dance Now
- cGANs work with 

different input

- Requires consistent input 
i.e., accurate tracking

- Network has no explicit 
3D notion

[Chan et al. ’18] Everybody Dance Now



Everybody Dance Now: Insights
• Conditioning via tracking seems promising!

– Tracking quality translates to resulting image quality

– Tracking human skeletons is less developed than faces
• Temporally it’s not stable… (e.g., OpenPose etc.)

– Fun fact, there were like 4 papers with a similar same 
idea that appeared around the same time…
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Videos still challenging for cGANs…



Deep Voxels

[Sitzmann et al. CVPR’19] Deep Voxels



Deep Voxels
• Main idea for video generation:

– Why learn 3D operations with 2D Convs !?!?

– We know how 3D transformations work
• E.g., 6 DoF rigid pose [ R | t ]

– Incorporate these into the architectures
• Need to be differentiable!

– Example application: novel view point synthesis
• Given rigid pose, generate image for that view

[Sitzmann et al. CVPR’19] Deep Voxels



Deep Voxels

2D U-Net

Renderin
g

Lifting Layer
2D        3D

2D U-Net

2D Feature
Extraction

Source 
View R, t

Projection Layer

3D        2D

OutputSource
Target

View R, t
3D U-Net

3D Features

Simplified overview for novel view synthesis

[Sitzmann et al. CVPR’19] Deep Voxels



Deep Voxels

[Sitzmann et al. CVPR’19] Deep Voxels



Deep Voxels

Issue: we don’t know the depth for the target!
-> Per-pixel softmax along the ray
-> Network learns the depth

Occlusion Network:

[Sitzmann et al. CVPR’19] Deep Voxels



Deep Voxels

[Sitzmann et al. ’18] Deep Voxels



Deep Voxels

[Sitzmann et al. ’18] Deep Voxels



Deep Voxels: Insights
• Lifting from 2D to 3D works great

– No need to take specific care for temp. coherency!

• All 3D operations are differentiable

• Currently, only for novel view-point synthesis
– I.e., cGAN for new pose in a given scene

• But: limited resolution due to dense 3D voxel grid

[Sitzmann et al. ’18] Deep Voxels



Neural Textures: Features on 3D Mesh



Siggraph’19 [Thies et al.]: Neural Textures

3D Geometry
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Neural Textures: Features on 3D Mesh
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Deferred Neural Rendering
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Neural Textures: Features on 3D Mesh

Siggraph’19 [Thies et al.]: Neural Textures



Input UV-Map Ours

Novel View-Point Synthesis

Siggraph’19 [Thies et al.]: Neural Textures



Ground Truth Ours

Novel View-Point Synthesis

Siggraph’19 [Thies et al.]: Neural Textures
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Scene Editing

Siggraph’19 [Thies et al.]: Neural Textures



Scene Editing

Siggraph’19 [Thies et al.]: Neural Textures



Facial Animation

Siggraph’19 [Thies et al.]: Neural Textures



Facial Animation
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Facial Animation

Siggraph’19 [Thies et al.]: Neural Textures



Facial Animation
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Facial Animation
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Deferred Neural Rendering

Siggraph’19 [Thies et al.]: Neural Textures



Deferred Neural Rendering

Siggraph’19 [Thies et al.]: Neural Textures



Big Open Challenges



Big Open Challenges

Photo-realistic Reconstruction



Big Open Challenges: How much can AI do?

Siggraph’19 [Thies et al.]: Neural Textures



Big Open Challenges: 3D in Networks
Why learn 3D operations, such as transformations?

-> differentiate known operators

Capsule networks are motivated by inverse graphics [Sabour et al. 17]
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Autoregressive 
Models
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Autoregressive Models vs GANs

• GANs learn implicit data distribution
– i.e., output are samples (distribution is in model)

• Autoregressive models learn an explicit distribution 
governed by a prior imposed by model structure
– i.e., outputs are probabilities (e.g., softmax)
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PixelRNN
• Goal: model distribution of natural images
• Interpret pixels of an image as product of conditional 

distributions
– Modeling an image → sequence problem
– Predict one pixel at a time
– Next pixel determined by all previously predicted pixels
 Use a Recurrent Neural Network

Prof. Leal-Taixé and Prof. Niessner 57[Van den Oord et al 2016]



PixelRNN

Prof. Leal-Taixé and Prof. Niessner 58[Van den Oord et al 2016]

For RGB



PixelRNN
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𝑥𝑖 ∈ 0,255
→ 256-way softmax

[Van den Oord et al 2016]



PixelRNN
• Row LSTM model architecture
• Image processed row by row
• Hidden state of pixel depends 

on the 3 pixels above it
– Can compute pixels in row in 

parallel

• Incomplete context for each 
pixel
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PixelRNN
• Diagonal BiLSTM model 

architecture
• Solve incomplete context 

problem
• Hidden state of pixel 

𝑝𝑖,𝑗depends on 𝑝𝑖,𝑗−1 and 𝑝𝑖−1,𝑗

• Image processed by diagonals
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PixelRNN
• Masked Convolutions
• Only previously predicted 

values can be used as 
context

• Mask A: restrict context 
during 1st conv

• Mask B: subsequent convs
• Masking by zeroing out 

values
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PixelRNN
• Generated 

64x64 images, 
trained on 
ImageNet
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PixelCNN
• Row and Diagonal LSTM  layers have potentially 

unbounded dependency range within the receptive 
field
– Can be very computationally costly

 PixelCNN: 
– standard convs capture a bounded receptive field
– All pixel features can be computed at once (during 

training)

Prof. Leal-Taixé and Prof. Niessner 64[Van den Oord et al 2016]



PixelCNN
• Model preserves spatial 

dimensions
• Masked convolutions to avoid 

seeing future context

Prof. Leal-Taixé and Prof. Niessner 65[Van den Oord et al 2016]

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Mask A



Gated PixelCNN
• Gated blocks
• Imitate multiplicative complexity of PixelRNNs to 

reduce performance gap between PixelCNN and 
PixelRNN

• Replace ReLU with gated block of sigmoid, tanh

Prof. Leal-Taixé and Prof. Niessner 66[Van den Oord et al 2016]

𝑦 = tanh 𝑊𝑘,𝑓 ∗ 𝑥 ⊙ 𝜎(𝑊𝑘,𝑔 ∗ 𝑥)

kth layer sigmoid

element-wise product convolution



PixelCNN Blind Spot

Prof. Leal-Taixé and Prof. Niessner 67[Van den Oord et al 2016]

http://sergeiturukin.com/2017/02/24/gated-pixelcnn.html

5x5 image / 3x3 conv Receptive Field Unseen context



• Split convolution to two stacks
• Horizontal stack conditions on 

current row
• Vertical stack conditions on pixels 

above

PixelCNN: Eliminating Blind Spot

Prof. Leal-Taixé and Prof. Niessner 68[Van den Oord et al 2016]



Conditional PixelCNN
• Conditional image generation
• E.g., condition on semantic class, text description

Prof. Leal-Taixé and Prof. Niessner 69[Van den Oord et al 2016]

𝑦 = tanh 𝑊𝑘,𝑓 ∗ 𝑥 + 𝑉𝑘,𝑓
𝑇 ℎ ⊙ 𝜎(𝑊𝑘,𝑔 ∗ 𝑥 + 𝑉𝑘,𝑔

𝑇 ℎ)

latent vector to be conditioned on 



Conditional PixelCNN
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Autoregressive Models vs GANs
• Advantages of autoregressive:

– Explicitly model probability densities
– More stable training
– Can be applied to both discrete and continuous data

• Advantages of GANs:
– Have been empirically demonstrated to produce higher 

quality images
– Faster to train
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Autoregressive Models
• State of the art is pretty impressive 
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Generating Diverse High-Fidelity Images with VQ-VAE-2
https://arxiv.org/pdf/1906.00446.pdf [Razavi et al. 19]

Vector Quantized Variational AutoEncoder

https://arxiv.org/pdf/1906.00446.pdf


See you next week 
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