Visualization and Interpretability
Visualization of ConvNets

- Visualization of Features
- Visualization of Activations
- Visualization of Gradients
- T-SNE Visualization
- DeepDream
- ...

Visualization is a great way for debugging!

Prof. Leal-Taixé and Prof. Niessner
Visualizing and understanding CNNs
• Pick a unit in layer 1.
• Find the 9 image patches in your dataset that maximize the unit’s activation.

Visualizing in the image space

Feature map 1, layer 1, 9 image patches that provided the highest activation

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing in the image space

Feature map 2, layer 1, 9 image patches that provided the highest activation
Visualizing in the image space

Layer 1

Layer 2

Visualizing in the image space

Zoom in, examples of Layer 2

Visualizing in the image space

Zoom in, examples of Layer 5

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014

Prof. Leal-Taixé and Prof. Niessner
Visualizing in the image space

Zoom in, examples of Layer 5

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing importance
The occlusion experiment

• Block different parts of the image and see how the classification score changes

The occlusion experiment

• Block different parts of the image and see how the classification score changes

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
The occlusion experiment

- Create a map, where each pixel represents the classification probability if an occlusion square is placed in that region.

The occlusion experiment

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features
DeconvNet

- Map activations back to the image space
Visualizing features

• Use a DeconvNet to visualize a certain layer

Prof. Leal-Taixé and Prof. Niessner
Visualizing features

• Choose an input image
• Forward pass through the network.
• Observation: filter 15 of the 3rd layer is highly activated by this image
• Goal: visualize filter 15 of the 3rd layer
• Zero out all other filters
• Pass the layer through the DeconvNet
Visualizing features

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

- Unpooling

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

- ReLU: you are still interested in having positive features for visualization.

Visualizing features

• Deconvolution operation

• In practice we convolve with the transpose of the learned filter

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Why the transpose?

• You want to find out what inputs influenced your outputs and how much

• Blackboard!
Why the transpose?

7x7 input

5x5 input

CONV
Why the transpose?

7x7 input

5x5 input

3x3 receptive field = 1 output pixel is connected to 9 input pixels

3x3 output

Rewritten CONV
Why the transpose?

7x7 input

CONV

5x5 input

DECONV

7x7 output
Why the transpose?

Each input pixel had a different contribution to the black output pixel.

7x7 input

5x5 input

7x7 output
Why the transpose?

7x7 input

Goal: keep the contribution when we reconstruct the input (the contribution = weights)

7x7 output

5x5 input
Why the transpose?

CONV 3x3 kernel

Goal: keep the contribution when we reconstruct the input (the contribution = weights)
I want to express DECONV still as a convolution operation. To obtain the red pixel, where do I place the filter?
I want to express DECONV still as a convolution operation. To obtain the blue pixel, where do I place the filter?
Why the transpose?

CONV 3x3 kernel

DECONV 3x3 kernel

5x5 input

7x7 output

I want to express DECONV still as a convolution operation. To obtain the purple pixel, where do I place the filter?
Why the transpose?

I want to express DECONV still as a convolution operation. To obtain the dark blue pixel, where do I place the filter?
Why the transpose?

We obtain the transposed filter! We just convolve the 5x5 input with the transposed filter and obtain the “deconvolved” output.
Why the transpose?

We obtain the transposed filter! We just convolve the 5x5 input with the transposed filter and obtain the “deconvolved” output.
Visualizing features

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features: evolution

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Other ways of inverting ReLU

Visualization helps

• Observations on AlexNet

• 1. First layer is a mix of low and high frequency information, no mid-frequencies are covered

• Solution: Change from 11x11 to 7x7
Visualization helps

11x11

7x7
Visualization helps

• Observations on AlexNet

• 2. Aliasing artifacts in the 2nd layer caused by the large stride

• Solution: stride 4 changed to stride 2
Visualization helps
Visualization helps

• The best part: classification score improved by 2%!

• Actively use visualization to debug your CNNs
Visualizing features

1. DeconvNet: finding the parts of the image that the filter responds to

2. Gradient ascent: generate a synthetic image that maximally activates a filter

Visualizing features 2

- Want to find an image that maximizes the score for a particular class

\[\arg \max_{I} S_c(I) + \lambda \|I\|_2^2 \]

- The score is taken before the softmax layer. Direct output of the Fully Connected layer.

- L2 norm to avoid only a few very large pixels

Simonyan et al. „Deep inside convolutional networks: visualizing image classification models and saliency maps“. ICLR Workshop 2014
Visualizing features 2

1. Get a trained CNN (mean of the training images was subtracted to all images)
2. Pass a zero image through the CNN

Score for c
Visualizing features 2

• 3. Maximize the score ↠ use gradient ascent and backpropagation

• 4. Make a small update on the image
Visualizing features 2

• 5. Repeat
• 6. Visualize by adding the training mean image
Visualizing features 2.1

- Improve visualization with a better regularization

$$\arg \max_I S_c(I) + \lambda \|I\|_2^2$$

- Propose different regularizations: using a gaussian blur on the image, clipping pixels with small value to 0, clipping gradients with small value to zero

Yosinksi et al. „Understanding neural networks through deep visualization“. ICML Workshop 2014
You can also visualize the features DeepVis [Yosinski et al. 15]
http://yosinski.com/deepvis
DeepDream

• Until now: Synthesize an image to maximize a specific feature

• Now: Amplify the feature activations at some layer in the network

[Mordvintsev et al. 15] DeepDream
DeepDream

1. Feed an image to a network
2. Choose a layer and ask the network to enhance whatever was detected ➔ If you see dogs, show me more dogs!
DeepDream

1. Forward pass of the image up to layer L
2. Set the gradient of the layer = activations
 - Large activations for the dog filter will create large gradients
 - The image will be changed to „show more dogs“
3. Backpropagate
4. Update the image
DeepDream

- Low layers: basic features
DeepDream

- Deep layers: we start to see whole objects
Deep layers: we start to see whole objects.
DeepDream

Prof. Leal-Taixé and Prof. Niessner

- Deep layers: we start to see whole objects
DeepDream: amplifying the features

Mordvintsev et al. 15

Prof. Leal-Taixé and Prof. Niessner
t-SNE
Intuition

• We want to visualize the last FC layer of AlexNet which dimension 4096

• We do a forward pass of all the images and get their 4096 representations
Intuition

• Nearest neighbor visualization

Test image L2 Nearest neighbors in feature space

Image credit: Fei-Fei, Yeung, Johnson
Intuition

• How can I visualize these clusters in feature space?

• Map high-dimensional embedding to 2D map which preserves the pairwise distance of the points

• This mapping is done by t-SNE
t-SNE Visualization: MNIST

Prof. Leal-Taixé and Prof. Niessner
t-SNE Visualization: ImageNet
t-SNE Visualization: ShapeNet
When is t-SNE worth using?

• You can use it to debug your network

• Good for visualizing the clusters created by a Siamese network
More visualizations

• Saliency visualization: Simonyan et al. „Deep inside convolutional networks: visualizing image classification models and saliency maps“. ICLR Workshop 2014

• Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
 Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, Dhruv Batra
Next lecture

• Next lecture on Monday - Autoencoders

• Make sure you are working on your projects!