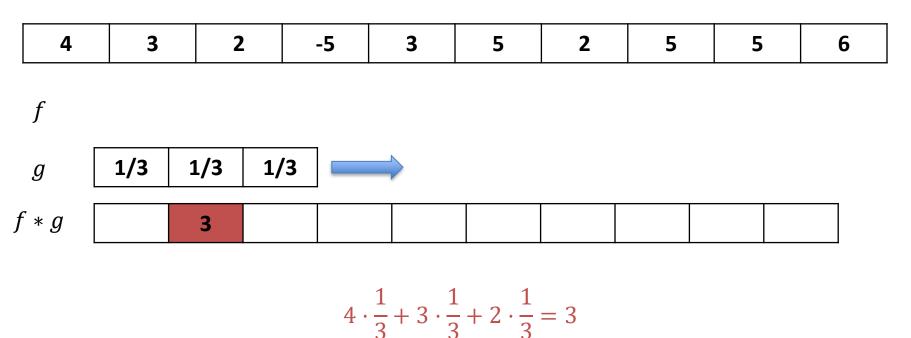


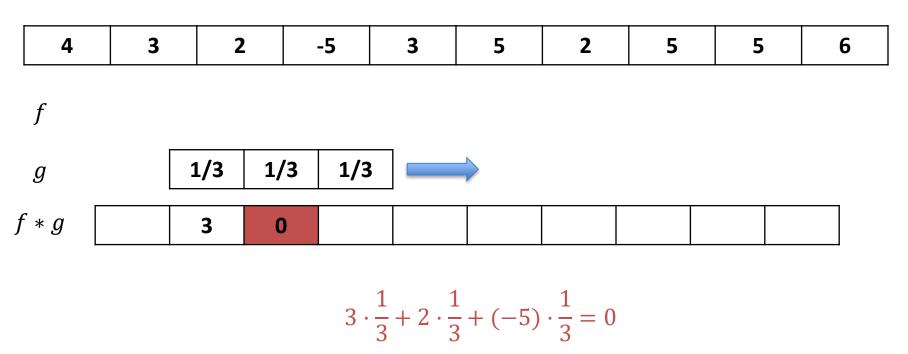
Deep Learning in Higher Dimensions

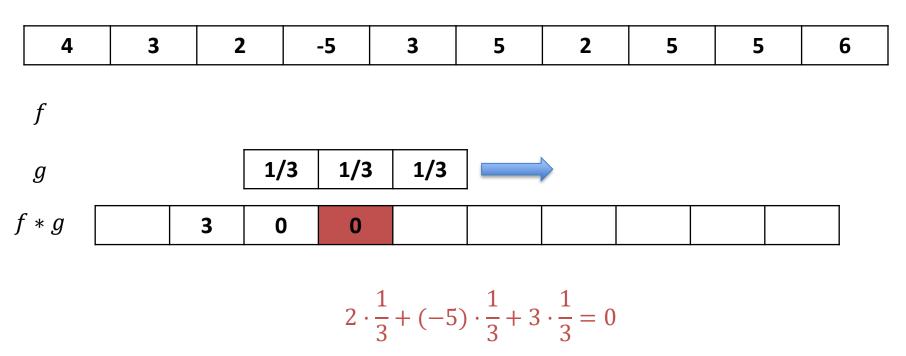
Prof. Leal-Taixé and Prof. Niessner

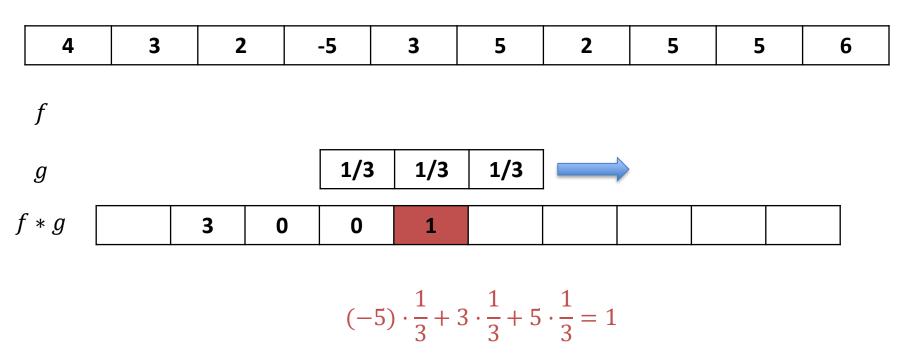
Multi-Dimensional ConvNets

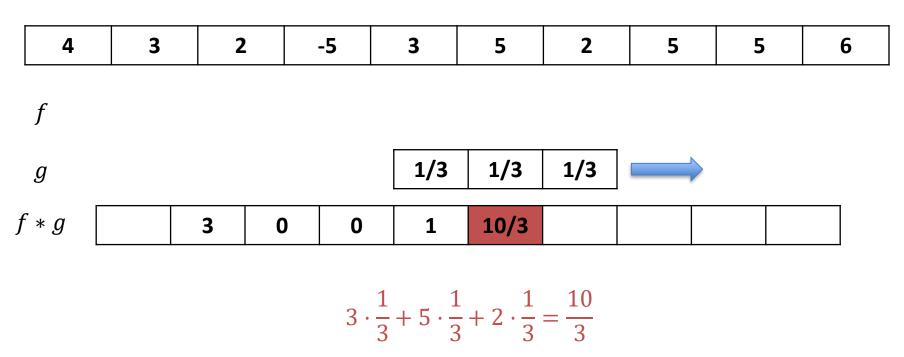
- 1D ConvNets
 - Audio / Speech
 - Also Point Clouds
- 2D ConvNets
 - Images (AlexNet, VGG, ResNet -> Classification, Localization, etc..)
- 3D ConvNets
 - For videos
 - For 3D data
- 4D ConvNets
 - E.g., dynamic 3D data (Haven't seen much work there)
 - Simulations

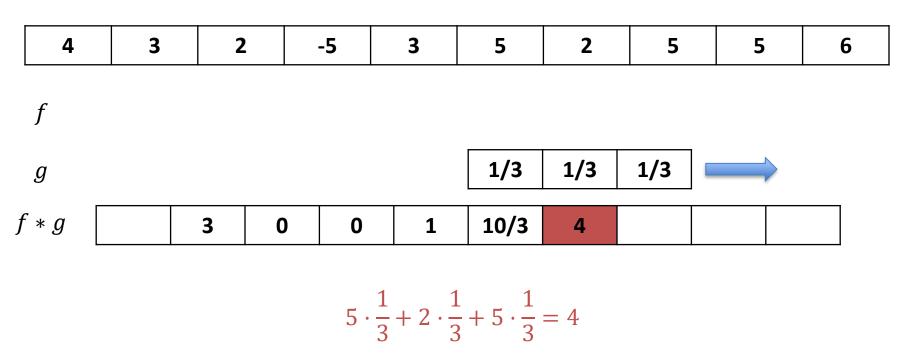


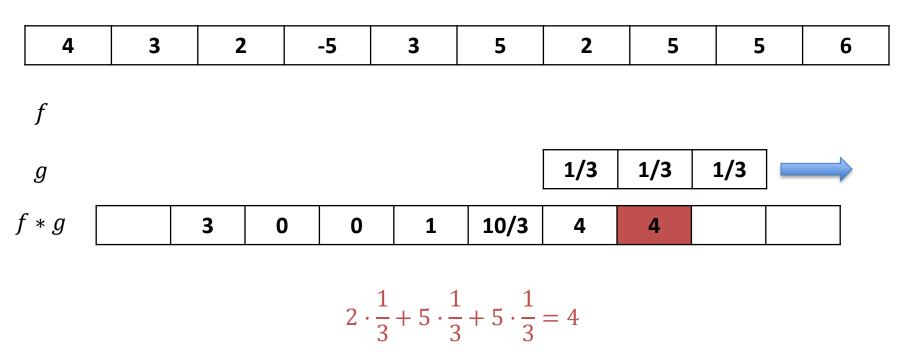


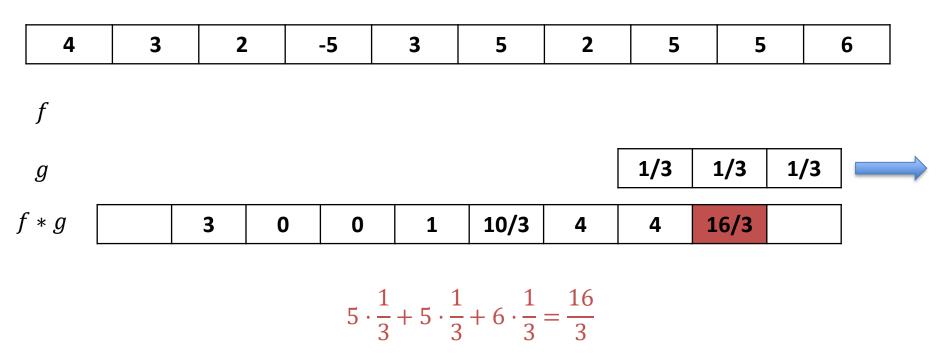










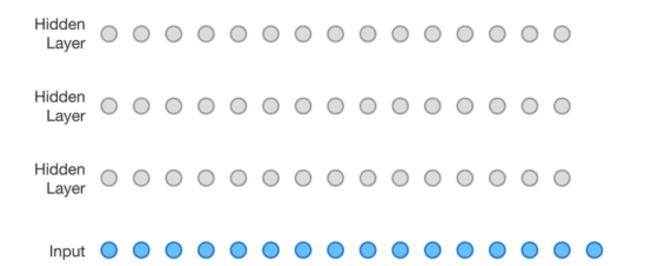


1D ConvNets: WaveNet

1 Second

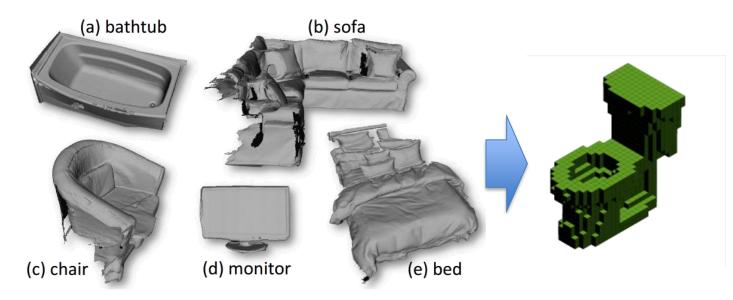
[van der Ooord 16] <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>

1D ConvNets: WaveNet



[van der Ooord 16] <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>

3D Classification

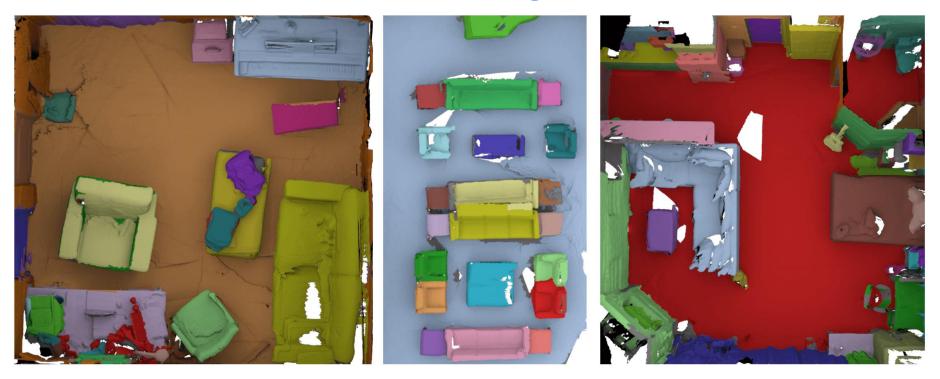


Instance: 010.toilet_000000079.001 Predicted label: toilet True label: toilet

Class from 3D model (e.g., obtained with Kinect Scan)

[Maturana et al. 15] & [Qi et al. 16] 3D vs Multi-view

3D Semantic Segmentation



1500 densely annotated 3D scans; 2.5 mio RGB-D frames

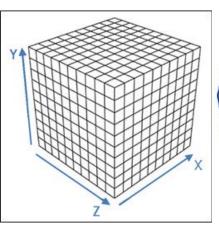
[Dai et al. 17] ScanNet

Volumetric Grids

Volumetric Grids

Volumetric Data Structures

- Occupancy grids
- Ternary grids
- Distance Fields
- Signed Distance fields

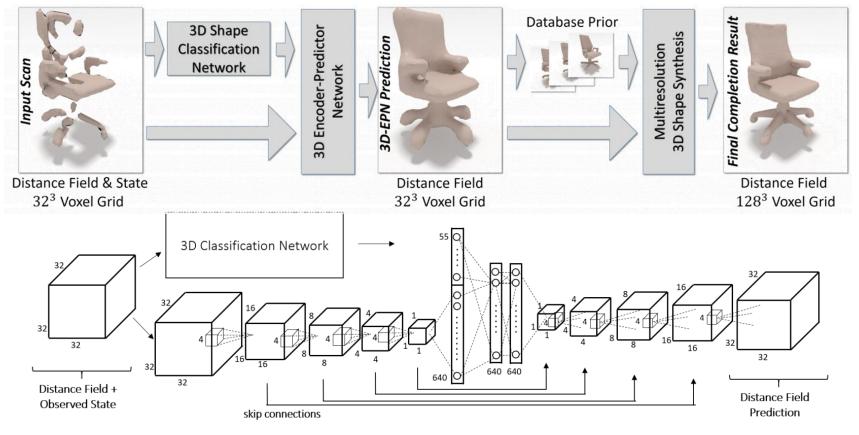


(binary) Voxel Grid

ℓ_1 -Err (32 ³)	ℓ_1 -Err (128 ³)
0.382	1.94
0.376	1.93
0.310	1.82
0.309	1.80
	0.382 0.376 0.310

Shape completion error (higher == better)

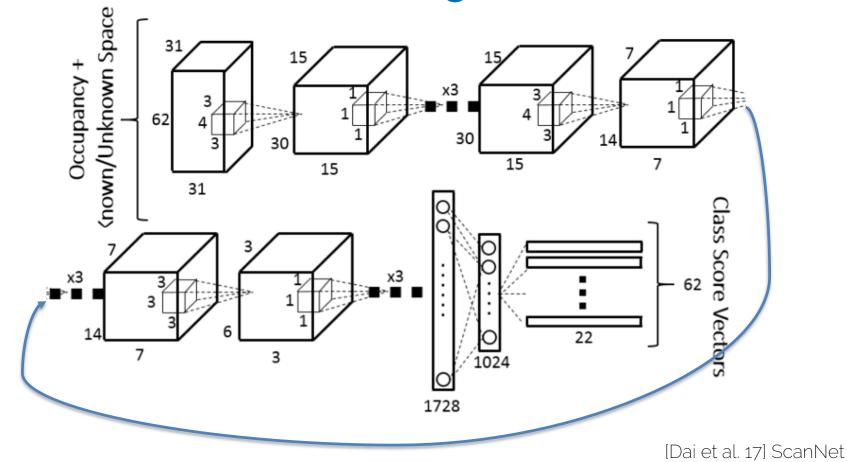
3D Shape Completion on Grids



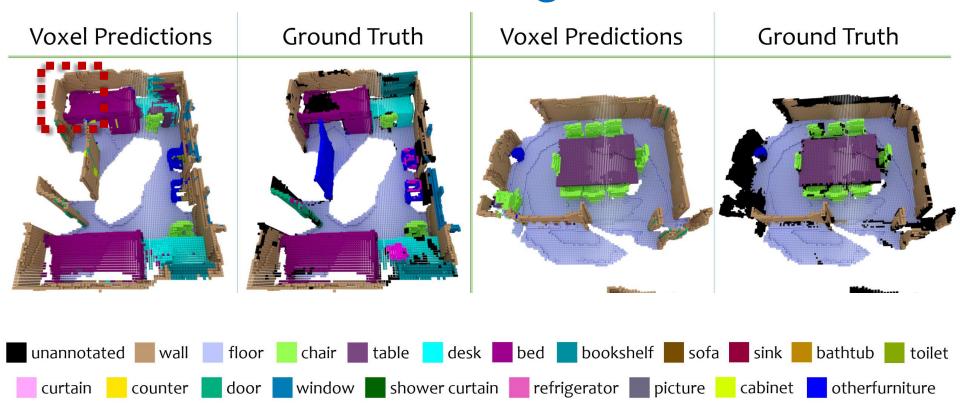
Works with 32 x 32 x 32 voxels...

[Dai et al. 17] CNNComplete

ScanNet: Semantic Segmentation in 3D

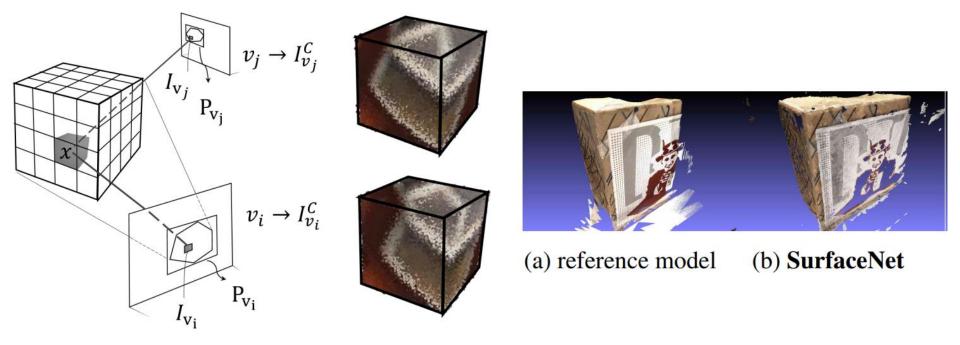


ScanNet: Sliding Window



[Dai et al. 17] ScanNet

SurfaceNet: Stereo Reconstruction

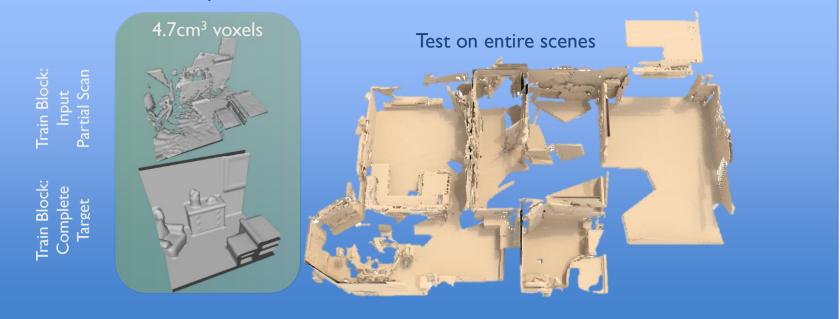


Run on 32 x 32 x 32 blocks -> takes forever...

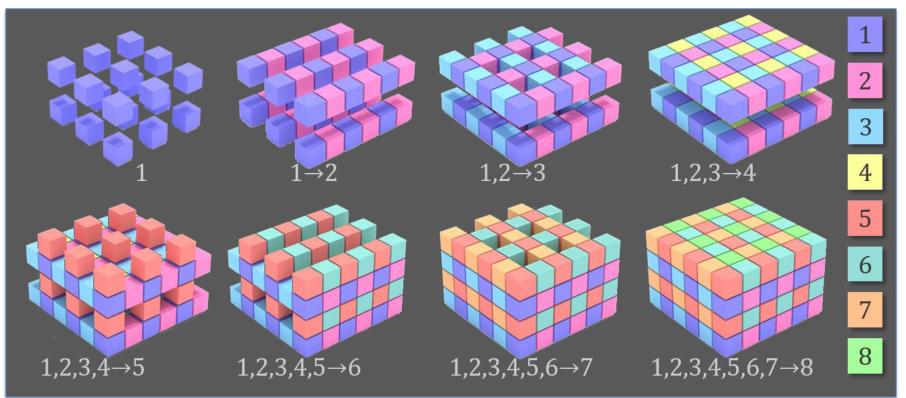
[Ji et al. 17] SurfaceNet

ScanComplete: Fully Convolutional

Train on crops of scenes

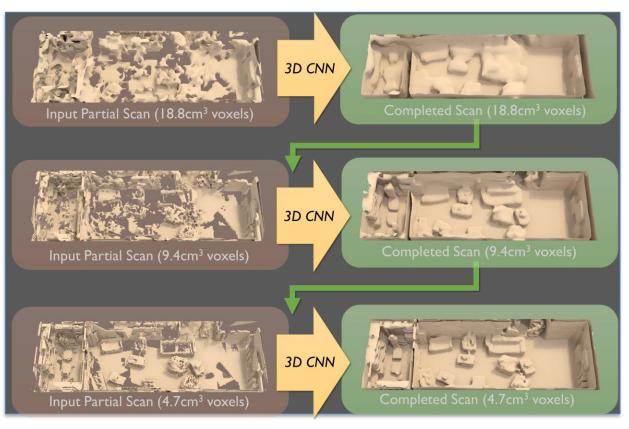


Dependent Predictions: Autoregressive Neural Networks



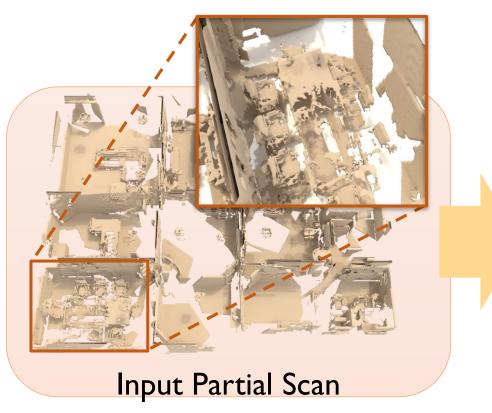
Prof. Leal-Taixé and Prof. Niessner

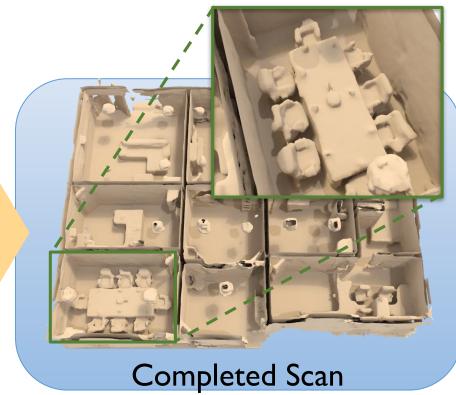
Spatial Extent: Coarse-to-Fine Predictions



Prof. Leal-Taixé and Prof. Niessner

ScanComplete: Fully Convolutional

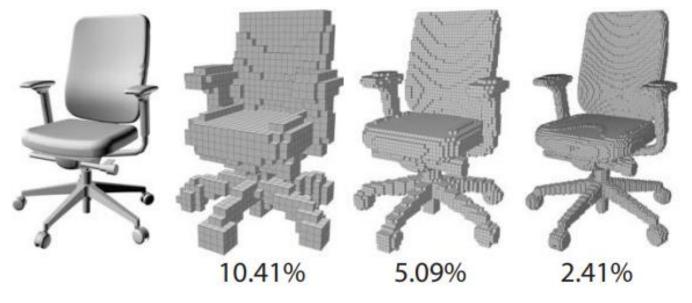




Conclusion so far

- Volumetric Grids are easy
 - Encode free space
 - Encode distance fields
 - Need a lot of memory
 - Need a lot of processing time
 - But can be used sliding window or fully-conv.

Conclusion so far



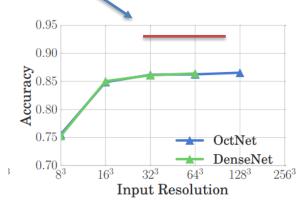
Surface occupancy gets smaller with higher resolutions

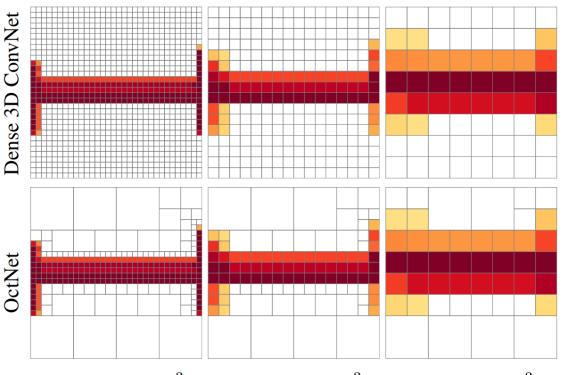
Volumetric Hierarchies

Discriminative Tasks

Structure is known in advance!

State of the art is somewhere here...

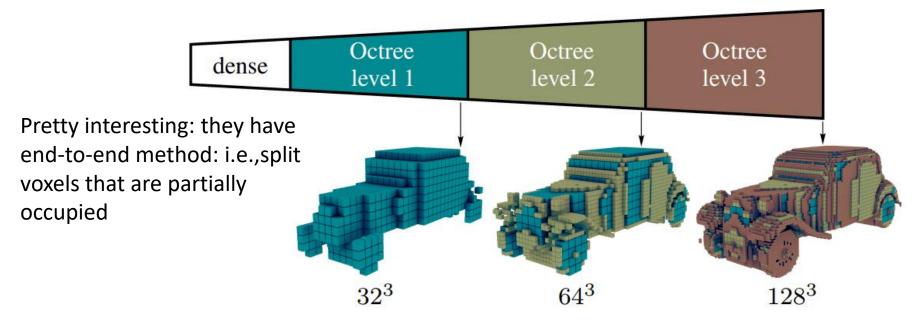




(b) Accuracy (a) Layer 1: 32^3 (b) Layer 2: 16^3 (c) Layer 3: 8^3 <u>OctNet: Learning Deep 3D Representations at High Resolutions</u> (CVPR 2017) <u>O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis</u> (SIG17)

Generative Tasks

Need to infer structure!



Octree Generating Networks: Efficient Convolutional Architectures for High-resolution Outputs OctNetFusion: Learning Depth Fusion from Data (that one not end to end)

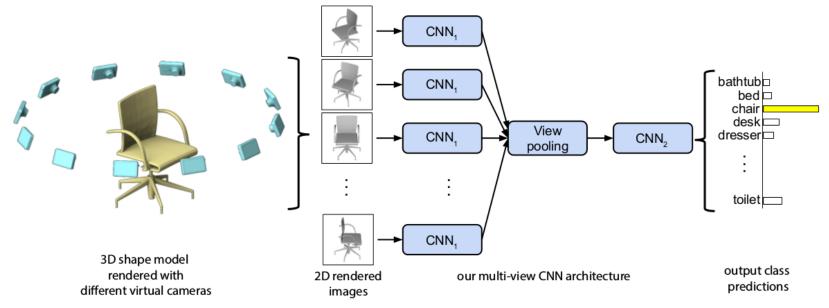
Conclusion so far

- Hierarchies
 - are great for reducing memory and runtime
 - Comes at a performance hit
 - Easier for discriminative tasks when structure is known

Multi-view

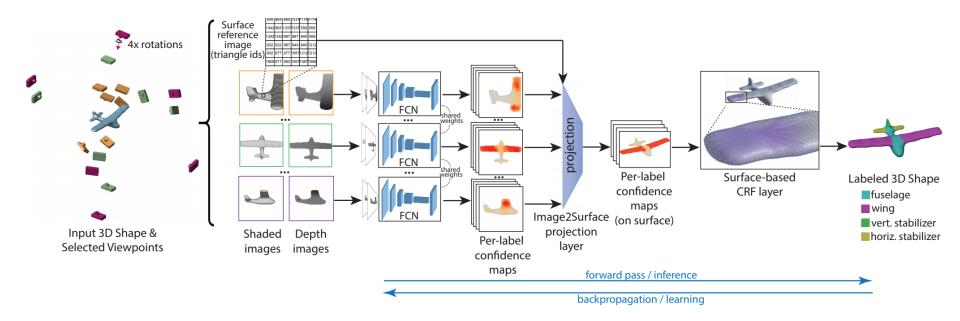
Multiple Views: Classification

- RGB images from fixed views around object:
 - view pooling for classification (only RGB; no spatial corr.)



Multi-view Convolutional Neural Networks for 3D Shape Recognition

Multiple Views: Segmentation



3D Shape Segmentation with Projective Convolutional Networks

This one is interesting in a sense that it does 3D shape segmentation (only on CAD models) But it uses multi-view and has a spatial correlation on top of the mesh surface

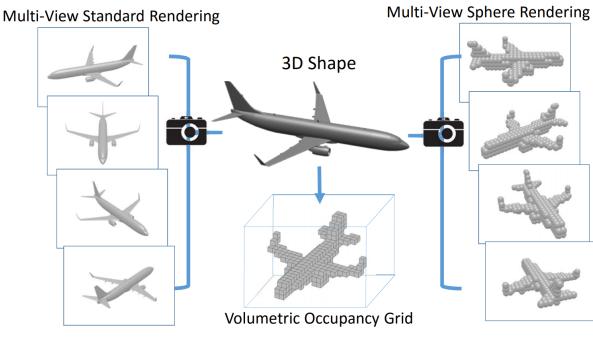


Figure 1. 3D shape representations.

Method	#Views	Accuracy (class)	Accuracy (instance)
SPH (reported by [33])	-	68.2	-
LFD (reported by [33])	-	75.5	-
FV (reported by [32])	12	84.8	10.00
Su-MVCNN [32]	80	90.1	-
PyramidHoG-LFD	20	87.2	90.5
Ours-MVCNN	20	89.7	92.0
Ours-MVCNN-MultiRes	20	91.4	93.8

Table 3. Comparison of multi-view based methods. Numbers reported are classification accuracy (class average and instance average) on ModelNet40.

Volumetric and Multi-View CNNs for Object Classification on 3D Data

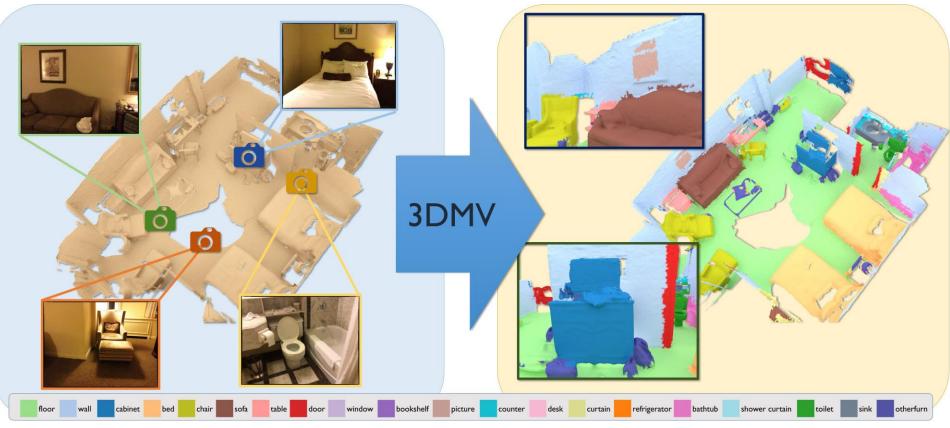
Hybrid: Volumetric + Multi-view

2D + 3D Semantic Segmentation

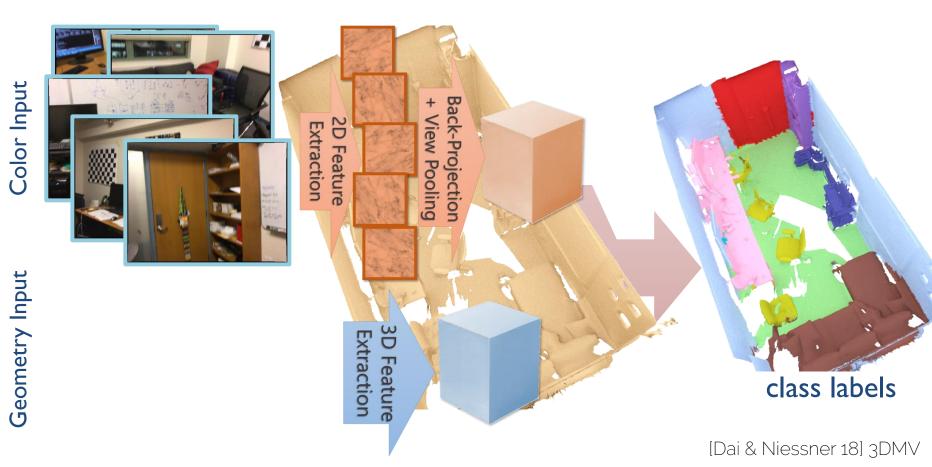
	avg class accuracy	
geometry only	54.4	
geometry + voxel colors	55.9	

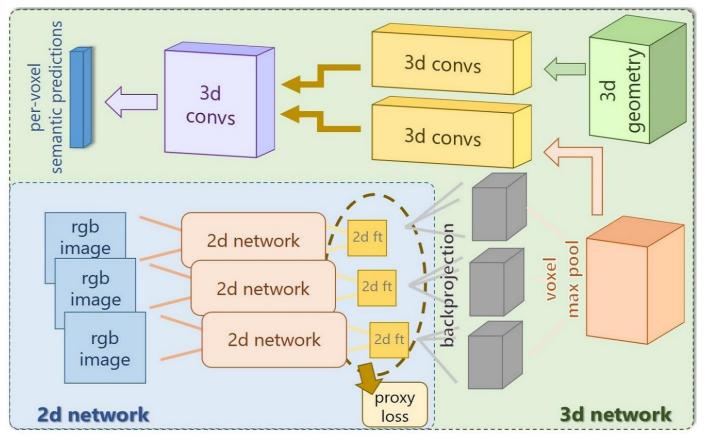
Resolution Mismatch!

[Dai & Niessner 18] 3DMV



[Dai & Niessner 18] 3DMV





[Dai & Niessner 18] 3DMV

	avg class accuracy						
color only	58.2						
geometry only	54.4						

[Dai & Niessner 18] 3DMV

	avg class accuracy
color only	58.2
geometry only	54.4
color+geometry	75.0

	avg class accuracy
geometry only	54.4
color+geometry (1 views)	70.I
color+geometry (3 views)	73.0
color+geometry (5 views)	75.0

	wall	floor	cab		s	bath	other	avg
2d only (1 view)	37.1	39.1	26.7	_	2	36.3	20.4	27.1
2d only (3 views)	58.6	62.5	40.8	-	7	61.5	34.3	44.2
Ours (no geo input)	76.2	92.9	59.3)	80.8	9.3	58.2
Ours (3d geo only)	60.4	95.0	54.4		3	87.0	20.6	54.4
Ours (3d geo+voxel color)	58.8	94.7	55.5		4	85.4	20.5	55.9
Ours (1 view, fixed 2d)	77.3	96.8	70.0	• • •	3	87.0	58.5	69.1
Ours (1 view)	70.7	96.8	61.4		5	81.6	51.7	70.1
Ours (3 view, fixed 2d)	81.1	96.4	58.0		1	92.5	60.7	72.8
Ours (3 view)	75.2	97.1	66.4		1	89.9	57.2	73.0
Ours (5 view, fixed 2d)	77.3	95.7	68.9	ł	7	93.5	59.6	74.5
Ours (5 view)	73.9	95.6	69.9		3	94.7	58.5	75.0

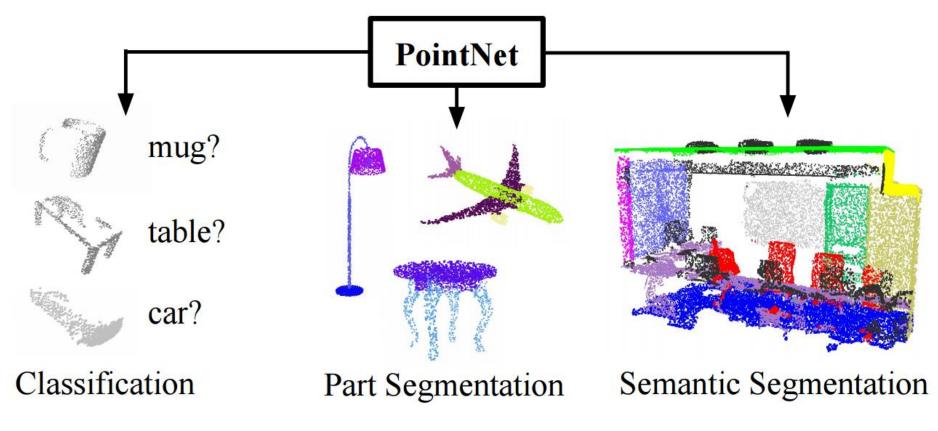
[Dai & Niessner 18] 3DMV

Conclusion so far

- Hybrid:
 - Nice way to combine color and geometry
 - Great performance (best so far for segmentation)
 - End-to-end helps less than we hoped for
 - Could be faster...

Point Clouds

DeepLearning on Point Clouds: PointNet



[Qi et al. 17] PointNet

DeepLearning on Point Clouds: PointNet

Classification Network

mlp (64,64) mlp (64,128,1024) input feature max mlp transform input points transform (512,256,k) pool 1024 nx64 nx64 nx3 nx3 nx1024 shared shared global feature k output scores. point features output scores 64x64 3x3 T-Net T-Net \transform transform nx128 nxm n x 1088 shared shared matrix matrix multiply multiply mlp (512,256,128) mlp(128,m)

Segmentation Network

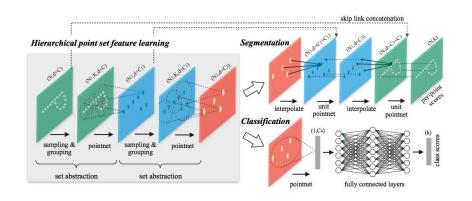
[Qi et al. 17] PointNet

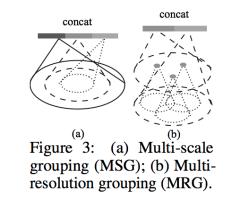
PointNet++

Main idea

- Learn hierarchical representation of point cloud
- Apply multiple (simplified) PointNets at different locations and scales
- Each Scale: Furthest-Point Sampling -> Query Ball Grouping -> PointNet
- Multi-scale or Multi-resolution grouping for sampling density robustness

Evaluations: Classification, Part-Segmentation, Scene-Segmentation





[Qi et al. 17] PointNet++

Point Convolutions

Main idea

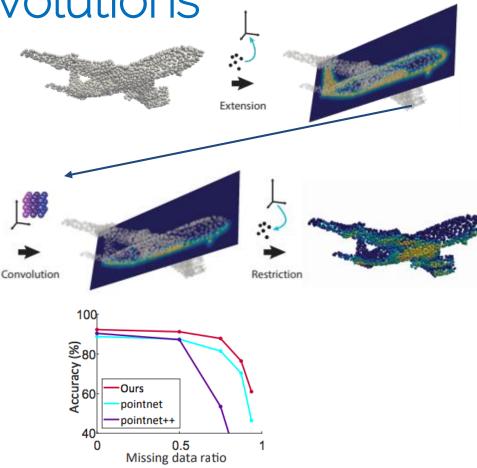
- Transform points to continuous R3 representation (RBFs)
- Convolve in R3
- Restrict results to points

Uses Gaussian RBF representation.

Boils down to computing fixed weights for convolution.

Don't use real data as far as I know!

<u>Point Convolutional NN by Extension Operators</u> Matan Atzmon, Haggai Maron, Yaron Lipman (SIGGRAPH 2018)



Conclusions so far

- PointNet variants:
 - Train super fast (also testing)
 - Can cover large spaces in one shot
 - Cannot represent free space
 - Performance (mostly) worse than pure volumetric
 - Still lots of ongoing research!

Point Sets (global)

Unordered point set <u>PointNet</u> (CVPR 2017)

Hierarchy of point sets

<u>PointNet++: Deep Hierarchical Feature Learning on Point Sets in a ...</u>(NIPS 2017) <u>Generalized Convolutional Neural Networks for Point Cloud Data</u> (ICMLA17)

Kd-tree

Escape from Cells: Deep Kd-Networks (ICCV 2017)

PointCNN <u>PointCNN</u> (seems arxiv only)

Point Sets (local)

RBF

Point Convolutional NN by Extension Operators (SIGGRAPH 2018) Tangent Convolutions for Dense Prediction in 3D (CVPR 2018)

Nearest point neighborhoods

Dynamic edge-conditioned filters in convolutional neural networks on graphs (CVPR17) 3D Graph Neural Networks for RGBD Semantic Segmentation (ICCV17) PPFNet: Global context aware local features for robust 3d point matching (CVPR18) FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis (CVPR18)

Very interesting combination where convolutions are essentially over line segments in 3D, and where both locations and are being optimized

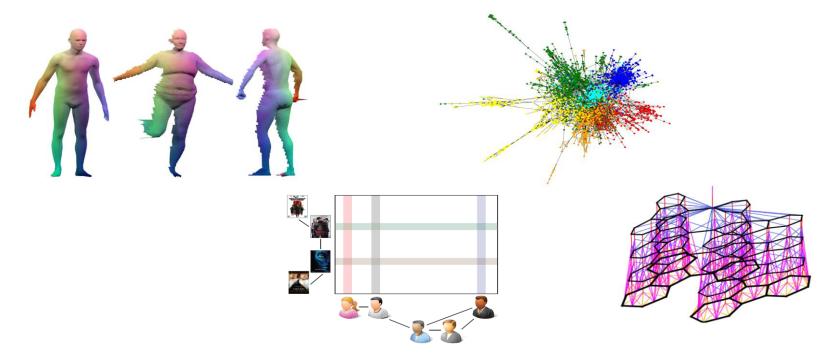
https://arxiv.org/abs/1605.06240

Idea is great, performance could be a bit better (probably hard to optimize)

Mesh-based

Convs on Meshes and Graphs

• Lots of work by Michael Bronstein et al.



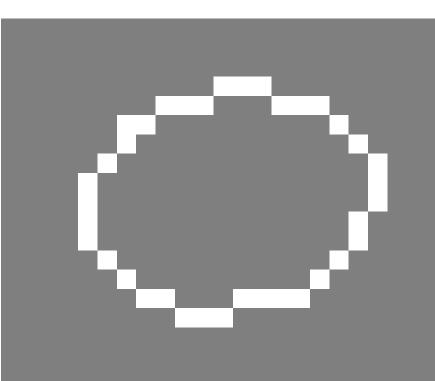
https://www.imperial.ac.uk/people/m.bronstein/publications.html

Conclusion so far

- Meshes / Surfaces:
 - Needs some differential geometry approximation
 - Convolutions in DG space
 - I haven't seen results on real-world data
 - Probably prone to noise and incomplete scans

Sparse Convolutions

Regular, dense 3x3 Convolution -> set of actives (non-zeros) grows rapidly -> need a lot of memory -> takes a long time for feature prop.



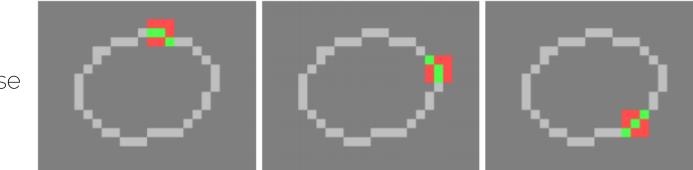
Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Regular, dense 3x3 Convolution -> set of actives (non-zeros) grows rapidly -> need a lot of memory -> takes a long time for feature prop.

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks



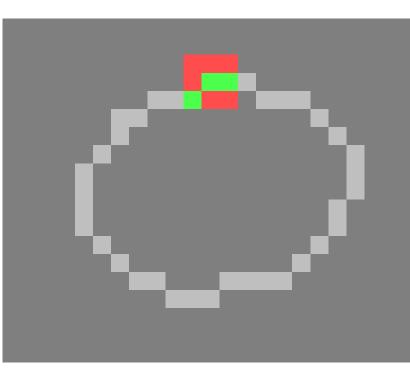
Sparse

Prof. Leal-Taixé and Prof. Niessner

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

60

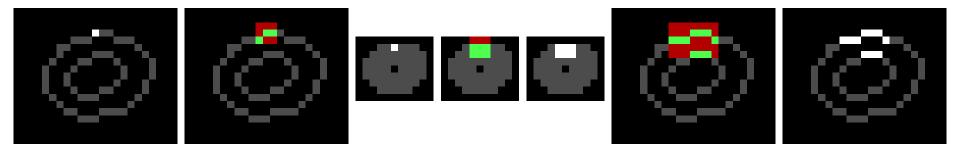
Submanifold Sparse Conv: -> set of active sites is unchanged -> active sites look at active neighbors (green) -> non-active sites (red) have no overhead



3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Submanifold Sparse Conv:

- -> disconnected components do not communicate at first
- -> although they will merge due to effect of stride, pooling, convs, etc.



from left: (i) an active point is highlighted; a convolution with stride 2 sees the green active sites (ii) and produces output (iii), 'children' of highlighted active point from (i) are highlighted; a submanifold sparse convolution sees the green active sites (iv) and produces output (v); a deconvolution operation sees the green active sites (vi) and produces output (vii).

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Dimension	Name in 'torch.nn'	Use cases
1	Conv1d	Text, audio
2	Conv2d	Lines in 2D space, e.g. handwriting
3	Conv3d	Lines and surfaces in 3D space or (2+1)D space-time
4	_	Lines, etc, in (3+1)D space-time

https://github.com/facebookresearch/SparseConvNet

Prof. Leal-Taixé and Prof. Niessner

Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Conclusions so far

- Spares (volumetric) Convs:
 - Implemented with spatial hash function
 - Features only around "surface"
 - Require significantly less memory
 - Allow for much higher resolutions
 - It's slower, but much higher accuracy

3D Scene Understanding

3D Semantic label benchmark

This table lists the benchmark results for the 3D semantic label scenario

	Method Info	avg iou	bathtub	bed	bookshelf	cabinet	chair	counter	curtain	desk	door	floor	otherfurniture	picture	refrigerator	shov curt
		•	v	~	v	v	v	v	v	v	∇	v	∇	v	v	
et	SparseConvNet	0.726 1	0.629 •	0.801 1	0.858 1	0.713 1	0.884 1	0.505 1	0.799 1	0.636 2	0.628 1	0.956 1	0.602 1	0.299 1	0.712 1	0.85
anN	MinkowskiNet34	0.679 2	0.811 1	0.734 3	0.739 3	0.641 z	0.804 2	0.413 4	0.759 3	0.696 1	0.545 2	0.938 s	0.518 z	0.141 10	0.623 2	0.75
	joint point-based	0.621 s	0.645 4	0.748 2	0.612 e	0.571 4	0.795 3	0.386 5	0.798 2	0.485 4	0.539 3	0.943 4	0.445 3	0.287 2	0.520 4	0.41
S	TextureNet	0.566 4	0.672 2	0.664 s	0.671 4	0.494 s	0.719 5	0.445 z	0.678 4	0.411 s	0.396 7	0.935 e	0.356 7	0.225 3	0.412 7	0.53
oD	DVVNet	0.562 5	0.648 3	0.700 4	0.770 2	0.588 3	0.687 s	0.333 7	0.650 s	0.514 3	0.475 4	0.906 12	0.359 s	0.223 4	0.340 9	0.44
et	PointConv	0.556 s	0.636 5	0.640 7	0.574 s	0.472 7	0.739 4	0.430 3	0.433 s	0.418 7	0.445 s	0.944 2	0.372 s	0.185 7	0.464 5	0.57
Σ	3DMV, FTSDF	0.501 7	0.558 s	0.608 s	0.424 13	0.478 e	0.690 7	0.246 11	0.586 •	0.468 5	0.450 5	0.911 10	0.394 4	0.160 s	0.438 e	0.21
est	3DMV	0.484 s	0.484 11	0.538 11	0.643 5	0.424 s	0.606 13	0.310 s	0.574 7	0.433 e	0.378 =	0.796 14	0.301 s	0.214 5	0.537 3	0.20
<u>e</u>	Angela Dai, Mathias Niessner: 30	MV: Joint 3D-N	Julii-View Pred	iction for 3D 5	Semantic Scene S	egmentation.	ECCV18									
eD	PointCNN with P RGB	0.479 🤉	0.510 s	0.583 10	0.417 14	0.414 9	0.708 6	0.241 13	0.387 11	0.405 10	0.323 9	0.944 2	0.300 9	0.132 11	0.226 13	0.41
σ	Yangyan Li, Rui Bu, Mingchao Sur	n, Baoquan Chi	in: PointCNN.	NIPS 2018												
Ē	SurfaceConvPF	0.442 10	0.505 10	0.622 *	0.380 15	0.342 12	0.654 10	0.227 14	0.397 10	0.387 11	0.276 11	0.924 s	0.240 11	0.198 e	0.359 s	0.26
Г	Hao Pan, Shilin Liu, Yang Liu, Xin	Tong: Convolut	ional Neural N	elworks on 30	D Surfaces Using I	Parallel Fram	19.									
oD	Tangent P Convolutions	0.438 11	0.437 13	0.646 6	0.474 10	0.389 10	0.645 11	0.353 s	0.258 13	0.282 14	0.279 10	0.918 s	0.298 10	0.147 s	0.283 10	0.26
	Maxim Talarchenko, Jaeaik Park, 1	Vladlen Kollun,	Qtan-Yi Zhou:	Tangent com	rolutions for dense	prediction in	3d. CVPR 20	18								
	SPLAT Net [🖸	0.393 12	0.472 12	0.511 12	0.606 7	0.311 13	0.656 9	0.245 12	0.405 •	0.328 13	0.197 14	0.927 7	0.227 13	0.000 16	0.001 16	0.24
Ľ	Hang Su, Varun Jampani, Deging	Sun, Subhrana	u Maji, Evange	los Kalogerał	us, Ming-Hauan Yi	ang, Jan Kaul	z: SPLATNet:	Sparse Latio	Networks for	Point Cloud I	trocessing. C1	VPR 2018				
aluatio	ScanNet+FTSDF	0.383 13	0.297 15	0.491 13	0.432 12	0.358 11	0.612 12	0.274 9	0.116 15	0.411 s	0.265 12	0.904 13	0.229 12	0.079 14	0.250 11	0.18
<u>a</u>	PointNet++	0.339 14		0.478 14				0.250 10	0.247 14	0.278 15	0.261 13	0.677 16	0.183 14	0.117 12	0.212 14	0.14
2	Charles R. Qi, Li Yi, Hao Su, Leon	idas J. Guttas:	pointnet++: de	ep hierarchic	al feature learning	on point sets	in a metric sp	1809.								
	SSC-UNet	0.308 15	0.353 14	0.290 16	0.278 16	0.166 16	0.553 14	0.169 18	0.286 12	0.147 18	0.148 16	0.908 11	0.182 15	0.084 15	0.023 15	0.01
	ScanNet 🕑		0.203 16					0.211 15				0.786 15	0.145 16	0.102 13	0.245 12	0.15
	Angela Dai, Angel X. Chang, Man	olts Savva, Mac	iej Halber, Tho	mas Funkhos	user, Matthias Niel	Bner: ScanNe	t Richly-anno	taled 3D Reco	instructions of	Indoor Scene	s. CVPR17					

http://www.scan-net.org/

Angela Dai, Angel X. Chang, Manola Savva, Maclej Halber, Thomas Funkho

Next Lectures

• Next week is last lecture slot!

• Keep working on the projects!

• Research opportunities

Invited Guest Lecture @ I2DL

• Tuesday, February 4th: 2pm – HS1

• Timo Aila from Nvidia Research

• Topic: ProGan, StyleGan, and many more 🕲

See you next week 🕲