Basics of DL
What we assume you know

• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture

• PyTorch (can use TensorFlow...)

• You have trained already several models and know how to debug problems, observe training curves, prepare training/validation/test data.
What is a Neural Network?
Neural Network

• Linear score function \(f = Wx \)

On CIFAR-10

On ImageNet

Prof. Leal-Taixé and Prof. Niessner
Neural Network

• Linear score function $f = Wx$

• Neural network is a nesting of ‘functions’
 – 2-layers: $f = W_2 \max(0, W_1 x)$
 – 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 – 4-layers: $f = W_4 \tanh (W_3, \max(0, W_2 \max(0, W_1 x)))$
 – 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 – ... up to hundreds of layers
Neural Network

1-layer network: \(f = Wx \)

2-layer network: \(f = W_2 \max(0, W_1x) \)

128 × 128 = 16384

10

128 × 128 = 16384

1000

10
Neural Network
Loss functions
Neural networks

What is the shape of this function?

Loss (Softmax, Hinge)

Prediction
Loss functions

• Softmax loss function

\[L_i = - \log \left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}} \right) \]

Evaluate the ground truth score for the image

• Hinge Loss (derived from the Multiclass SVM loss)

\[L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1) \]
Loss functions

• Softmax loss function
 – Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)
 – Saturates whenever it has learned a class “well enough”
Activation functions
Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Saturated neurons kill the gradient flow

\[\frac{\partial L}{\partial x} = \frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma} \]
Problem of positive output

More on zero-mean data later
tanh

Prof. Leal-Taixé and Prof. Niessner

LeCun 1991
Rectified Linear Units (ReLU)

- Dead ReLU
- Fast convergence
- What happens if a ReLU outputs zero?
- Large and consistent gradients
- Does not saturate
Maxout units

- Generalization of ReLUs
- Linear regimes
- Does not die
- Does not saturate

Increase of the number of parameters
Optimization
Gradient Descent for Neural Networks

\[h_j = A(b_{0,j} + \sum_k x_k w_{0,j,k}) \]

\[y_i = A(b_{1,i} + \sum_j h_j w_{1,i,j}) \]

\[L_i = (y_i - t_i)^2 \]

Just simple: \(A(x) = \max(0, x) \)

\[\nabla_{w,b} f_{x,t}(w) = \begin{bmatrix} \frac{\partial f}{\partial w_{0,0,0}} \\ \vdots \\ \frac{\partial f}{\partial w_{l,m,n}} \\ \vdots \\ \frac{\partial f}{\partial b_{l,m}} \end{bmatrix} \]
Stochastic Gradient Descent (SGD)

\[\theta^{k+1} = \theta^k - \alpha \nabla_\theta L(\theta^k, x\{1..m\}, y\{1..m\}) \]

\[\nabla_\theta L = \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta L_i \]

Note the terminology: iteration vs epoch

- \(k \) now refers to \(k \)-th iteration
- \(m \) training samples in the current batch
- Gradient for the \(k \)-th batch

Prof. Leal-Taixé and Prof. Niessner
Gradient Descent with Momentum

\[\nu^{k+1} = \beta \cdot \nu^k + \nabla_\theta L(\theta^k) \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \nu^{k+1} \]

Exponentially-weighted average of gradient
Important: velocity \(\nu^k \) is vector-valued!
Gradient Descent with Momentum

Step will be largest when a sequence of gradients all point to the same direction.

Hyperparameters are α, β.

β is often set to 0.9.

$$\theta^{k+1} = \theta^k - \alpha \cdot v^{k+1}$$
RMSProp

\[s^{k+1} = \beta \cdot s^k + (1 - \beta) [\nabla \theta L \circ \nabla \theta L] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla \theta L}{\sqrt{s^{k+1}} + \epsilon} \]

Hyperparameters: \(\alpha, \beta, \epsilon \)

Element-wise multiplication

Needs tuning!

Often 0.9

Typically \(10^{-8}\)
RMSProp

(uncentered) variance of gradients
-> second momentum

We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

Can increase learning rate!

$$s^{k+1} = \beta \cdot s^k + (1 - \beta)[\nabla_{\theta} L \circ \nabla_{\theta} L]$$

$$\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla_{\theta} L}{\sqrt{s^{k+1}} + \epsilon}$$

Fig. credit: A. Ng
Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

\[m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla_\theta L(\theta^k) \]

First momentum: mean of gradients

\[v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2) [\nabla_\theta L(\theta^k) \cdot \nabla_\theta L(\theta^k)] \]

Second momentum: variance of gradients

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{m^{k+1}}{\sqrt{v^{k+1}} + \epsilon} \]
Adam

Combines Momentum and RMSProp

\[m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1)\nabla \theta L(\theta^k) \]

\[v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2)[\nabla \theta L(\theta^k) \circ \nabla \theta L(\theta^k)] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\hat{m}^{k+1}}{\sqrt{\hat{v}^{k+1} + \epsilon}} \]

\[m^{k+1} \text{ and } v^{k+1} \text{ are initialized with zero} \]
\[\text{-> bias towards zero} \]

Typically, bias-corrected moment updates

\[\hat{m}^{k+1} = \frac{m^k}{1 - \beta_1} \]

\[\hat{v}^{k+1} = \frac{v^k}{1 - \beta_2} \]
Convergence
Importance of Learning Rate

![Graph showing the impact of learning rate on loss over epochs]

- **Very high learning rate** leads to rapid but possibly unstable convergence.
- **Low learning rate** results in steady but slow convergence.
- **Good learning rate** balances the trade-off between speed and stability, leading to efficient and reliable convergence.

Prof. Leal-Taixé and Prof. Niessner
Over- and Underfitting

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson. O’Reily Media Inc., 2017
Over- and Underfitting

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html
Basic recipe for machine learning

• Split your data

60% train
20% validation
20% test

Find your hyperparameters
Basic recipe for machine learning

1. **Training error high?**
 - Yes: Train longer, new model architecture
 - No: Proceed to the next step.

2. **Dev error high?**
 - Yes: More data, regularization, new model architecture
 - No: Done!
Regularization
Regularization

- Any strategy that aims to

Lower validation error Increasing training error
Data augmentation

a. No augmentation (= 1 image)

224x224

b. Flip augmentation (= 2 images)

224x224

+ flips

c. Crop+Flip augmentation (= 10 images)

224x224
Early stopping

Training time is also a hyperparameter.

Overfitting
Bagging and ensemble methods

- Bagging: uses k different datasets

Training Set 1
Training Set 2
Training Set 3
Dropout

- Disable a random set of neurons (typically 50%)
How to deal with images?
Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Credit: Li/Karpathy/Johnson
Image filters

- Each kernel gives us a different image filter

Input

Edge detection
\[
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]

Box mean
\[
\frac{1}{9}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]

Sharpen
\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{bmatrix}
\]

Gaussian blur
\[
\frac{1}{16}
\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\]

LET'S LEARN THESE FILTERS!
Convolutions on RGB Images

32 × 32 × 3 image (pixels \(x \))

5 × 5 × 3 filter (weights \(w \))

activation map (also feature map)

slide over all spatial locations \(x_i \) and compute all output \(z_i \);
w/o padding, there are 28 × 28 locations

Prof. Leal-Taixé and Prof. Niessner
Convolution Layer

Let's apply **five** filters, each with different weights!
CNN Prototype

ConvNet is concatenation of Conv Layers and activations
CNN learned filters

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Pooling Layer: Max Pooling

Single depth slice of input

Max pool with 2×2 filters and stride 2

'Pooled' output
Classic CNN architectures
LeNet

- Digit recognition: 10 classes
- Conv -> Pool -> Conv -> Pool -> Conv -> FC
- As we go deeper: Width, height \uparrow Number of filters \downarrow

60k parameters

Prof. Leal-Taixé and Prof. Niessner
AlexNet

- Softmax for 1000 classes

[Krizhevsky et al. 2012]
VGGNet

- Striving for simplicity
- CONV = 3x3 filters with stride 1, same convolutions
- MAXPOOL = 2x2 filters with stride 2

[Simonyan and Zisserman 2014]
Still very common: VGG-16
ResNet

He et al. 2015
- Xavier/2 initialization
- SGD + Momentum (0.9)
- Learning rate 0.1, divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 10^{-5}
- No dropout
ResNet

- If we make the network deeper, at some point performance starts to degrade

- Too many parameters, the optimizer cannot properly train the network
ResNet

• If we make the network deeper, at some point performance starts to degrade
Inception layer

(a) Inception module, naïve version

(b) Inception module with dimensionality reduction
GoogLeNet: using the inception layer

[Szegedy et al. 2014]

Inception block
ADL4CV Content
Rough Outline

- Lecture 1: introduction
- Lecture 2: advanced architectures (e.g. siamese, capsules, attention)
- Lecture 3: advanced architectures con’t
- Lecture 4: Visualization, t-sne, grad-cam (active heatmaps), deep dream, excitation backprop
- Lecture 5: Bayesian Deep Learning
- Lecture 6: Autoencoders, VAE
- Lecture 7: GANs 1: Generative models, GANs.
- Lecture 8: GANs 2: Generative models, GANs
- Lecture 9: CNN++ / Audio<->Visual - autoregressive, pixelcnn
- Lecture 10: RNN -> NLP <-> Visual Q&A (focus on the cross domain: CNN for image, RNN for text) /
- Lecture 11: Multi-dimensional CNN, 3D DL, video DL: pooling vs fully-conv, operations... Self-supervised / unsupervised learning
- Lecture 12: Domain Adaptation / Transfer Learning
• Use Moodle!

• Enjoy 6 vs 30-40ish relationship (make use of it to prepare yourself for research)

• Interactive Lectures!
How to train your neural network?
Is data loading correct?

• Data output (target): overfit to single training sample (needs to have 100% because it just memorizes input)
 – It's irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training samples
 – It's now conditioned on input data

• Save and re-load data from PyTorch / TensorFlow
Network debugging

• Move from overfitting to a hand-full of samples
 – 5, 10, 100, 1000…
 – At some point, we should see generalization

• Apply common sense: can we overfit to the current number of samples?

• Always be aware of network parameter count!
Check timings

• How long does each iteration take?
 – Get precise timings!!!
 – If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
 – Speed up data loading: smaller resolutions, compression, train from SSD – e.g., network training is good idea
 – Speed up backprop:

• Estimate total timings: how long until you see some pattern? How long till convergence?
Network Architecture

• 100% mistake so far: “let’s use super big network and train for two weeks and we see where we stand.” [because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!
Debugging

• Need train/val/test curves
 – Evaluation needs to be consistent!
 – Numbers need to be comparable

• Only make one change at a time
 – “I’ve added 5 more layers and double the training size, and now I also trained 5 days longer” – it’s better, but WHY?
Overfitting

ONLY THINK ABOUT THIS ONCE YOU’RE TRAINING LOSS GOES DOWN AND YOU CAN OVERFIT!

Typically try this order:
- Network too big – makes things also faster 😊
- More regularization; e.g., weight decay
- Not enough data - makes things slower!
- Dropout - makes things slower!
- Guideline: make training harder -> generalize better

Prof. Leal-Taixé and Prof. Niessner
Pushing the limits!

PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also more data!
• Better architecture -> ResNet is typically standard, but InceptionNet architectures perform often better (e.g., InceptionNet v4, XceptionNet, etc.)
• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!
Bad signs...

• Train error doesn’t go down...
• Validation error doesn't go down... (ahhh we don't learn)
• Validation performs better than train... (trust me, this scenario is very unlikely – unless you have a bug 😊)
• Test on train set is different error than train... (forgot dropout?)
• Often people mess up the last batch in an epoch...

• You are training set contains test data...
• You debug your algorithm on test data...
“Most common” neural net mistakes

1) you didn't try to overfit a single batch first.
2) you forgot to toggle train/eval mode for the net.
3) you forgot to .zero_grad() (in pytorch) before .backward().
4) you passed softmaxed outputs to a loss that expects raw logits.
5) you didn't use bias=False for your Linear/Conv2d layer when using BatchNorm, or conversely forget to include it for the output layer

Credit: A. Karpathy
Next lecture

- Next Monday: advanced architectures
 - Lecture always from **10am to 11:30am**

- Keep projects in mind!
 - Start actively discussing -> reach out to us if you have questions!