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Going full Bayesian
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• Bayes = Probabilities

• Bayes Theorem

Evidence = data

Hypothesis = Model



Going full Bayesian
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• Start with a prior on the model parameters

• Choose a statistical model

• Use data to refine my prior, i.e., compute the posterior

No dependence 
on parameters

data
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• Start with a prior on the model parameters

• Choose a statistical model

• Use data to refine my prior, i.e., compute the posterior

priorposterior likelihood

data



Going full Bayesian
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• 1. Learning: Computing the posterior 
– Finding a point estimate (MAP) à what we have been

doing so far!

– Finding a probability distribution of This lecture



What have we learned so far?
• Advantages of Deep Learning models

– Very expressive models
– Good for tasks such as classification, regression,

sequence prediction
– Modular structure, efficient training, many tools
– Scales well with large amounts of data

• But we have also disadvantages…
– ”Black-box” feeling
– We cannot judge how “confident” the model is about a 

decision
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Modeling uncertainty

• Wish list:
– We want to know what our models know and what they 

do not know
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Modeling uncertainty

• Example: I have built a dog breed classifier
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Bulldog German 
sheperd

Chihuaha

What answer 
will my NN 

give?



Modeling uncertainty

• Example: I have built a dog breed classifier
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Bulldog German 
sheperd

Chihuaha

I would rather get as an answer 
that my model is not certain 
about the type of dog breed



Modeling uncertainty

• Wish list:
– We want to know what our models know and what they 

do not know

• Why do we care?
– Decision making
– Learning from limited, noisy, and missing data

– Insights on why a model failed
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Modeling uncertainty
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• Finding the posterior

– Finding a point estimate (MAP) à what we have been

doing so far!

– Finding a probability distribution of 

Image: https://medium.com/@joeDiHare/deep-bayesian-neural-networks-952763a9537



Modeling uncertainty
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• We can sample many times from the distribution and 

see how this affects our model’s predictions

• If predictions are consistent = model is confident

Image: https://medium.com/@joeDiHare/deep-bayesian-neural-networks-952763a9537



Modeling uncertainty
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I am not 
really 
sure

Kendal & Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?“ NIPS 2016



How do we get the posterior?

• Compute the posterior over the weights

• Probability of observing our data under all possible 

model parameters
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How do we 

compute 

this?



How do we get the posterior?

• How do we compute this?

• Denominator = we cannot compute all 

possible combinations

• Two ways to compute the 

approximation of the posterior:

Prof. Leal-Taixé and Prof. Niessner 16

Markov Chain Monte Carlo

Variational Inference



How do we get the posterior?

• Markov Chain Monte Carlo (MCMC)
– A chain of samples

that converge to  

• Variational Inference
– Find an approximation           that. 
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SLOW



Dropout for 
Bayesian Inference
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Recall: Dropout

• Disable a random set of neurons (typically 50%)
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Recall: Dropout

• Using half the network = half capacity
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Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant 

representations



Recall: Dropout

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as model ensemble
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Recall: Dropout

• Two models in one
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Model 1

Model 2



MC dropout

• Variational Inference
– Find an approximation           that

• Dropout training
– The variational distribution is from a Bernoulli distribution

(where the states are “on” and “off”)
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Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, ICML 2016



MC dropout

• 1. Train a model with dropout before every weight 
layer

• 2. Apply dropout at test time
– Sampling is done in a Monte Carlo fashion, hence the

name Monte Carlo dropout
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Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, ICML 2016



MC dropout
– Sampling is done in a Monte Carlo fashion, e.g.,

where 

and           is the dropout distribution
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Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning”, ICML 2016

classification

Parameter samplingNN



Measure your model’s uncertainty
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Kendal & Gal. “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?“ NIPS 2016



Another look
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Let us take another look

• We know it is intractable, we approximate it

• The denominator expresses how my data is 
generated
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Let us take another look

• We assume that the data is generated by some
random process, involving an unobserved continuous
random (latent) variable

• Generation process:

• Posterior: 
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Let us take another look

• Variational Inference
– Find an approximation.                

• My approximation is parameterized by a model
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Variational 
Autoencoders
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Recall: Autoencoders

• Encode the input into a representation (bottleneck) 
and reconstruct it with the decoder
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Conv Transpose Conv

Encoder Decoder



Variational Autoencoder
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Conv Transpose Conv

Encoder Decoder



Variational Autoencoder
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• Latent space is now a distribution
• Specifically it is a Gaussian

Encoder



Variational Autoencoder
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• Latent space is now a distribution
• Specifically it is a Gaussian

Encoder
Mean

Diagonal covariance



Variational Autoencoder
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• Latent space is now a distribution
• Specifically it is a Gaussian

Encoder
Mean

Diagonal covariance



Variational Autoencoder
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• Back to our Bayesian view, our generation process 
was:

• Which is the denominator of the posterior:

I want to optimize



Variational Autoencoder
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• Loss function for a data point 

I draw
samples of
the latent
variable z
from my
encoder



Variational Autoencoder
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• Loss function for a data point 

Bayes Rule

Posterior



Variational Autoencoder
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• Loss function for a data point 

Just a constant



Variational Autoencoder
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• Loss function for a data point 



Variational Autoencoder
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• Loss function for a data point 

Kullback-Leibler Divergences



Variational Autoencoder
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• Loss function for a data point 

Reconstruction loss Measures how good 
my latent distribution 
is with respect to my 

prior

I still cannot express 
the shape of the 

distribution. But I know



Variational Autoencoder
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• Loss function for a data point 

Loss function (lower bound)



Variational Autoencoder
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• Loss function for a data point

• Optimize 

Loss function (lower bound)



Variational Autoencoder
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• Training

Encoder

Make posterior 
distribution close to prior 

(close to unit Gaussian 
distribution)



Variational Autoencoder
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• Training

Encoder



Variational Autoencoder
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• Training

Encoder

Sample



Variational Autoencoder
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• Training

Encoder Decoder

Sample



Variational Autoencoder
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• Training

Decoder

Sample

Output is also parameterized



Variational Autoencoder
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• Training

Maximize the likelihood of 
reconstructing the input



Variational Autoencoder
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• For more details and mathematical derivation

• Reparameterization trick that allows us to backprop

• Kingman and Welling. “Auto-Encoding Variational
Bayes“. ICLR 2014



How about generating data?

• Training as seen before

http://kvfrans.com/variational-autoencoders-explained/Prof. Leal-Taixé and Prof. Niessner 53

http://kvfrans.com/variational-autoencoders-explained/


How about generating data?

• After training, generate random samples

Sample from the distribution

(e.g., unit Gaussian
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Generating data
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Each element of z 
encodes a different 
feature 



Generating data
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Degree of smile

Head pose



Autoencoder vs VAE

Autoencoder Variational Autoencoder Ground Truth

https://github.com/kvfrans/variational-autoencoderProf. Leal-Taixé and Prof. Niessner 57

https://github.com/kvfrans/variational-autoencoder


Autoencoder Overview

• Autoencoders (AE)

– Reconstruct input

– Unsupervised learning

– Latent space features are useful

• Variational Autoencoders (VAE)

– Probability distribution in latent space (e.g., Gaussian)

– Sample from model to generate output
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Autoencoder Overview

• Autoencoders (AE)

– Reconstruct input

– Unsupervised learning

– Latent space features are useful

• Variational Autoencoders (VAE)

– Probability distribution in latent space (e.g., Gaussian)

– Interpretable latent space (head pose, smile)

– Sample from model to generate output
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Generative models
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Taxonomy of generative models

Prof. Leal-Taixé and Prof. Niessner 61Figure from Ian Goodfellow, Tutorial on Generative Adversarial /networks, 2017



Taxonomy of generative models
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Taxonomy of generative models

Prof. Leal-Taixé and Prof. Niessner 63Figure from Ian Goodfellow, Tutorial on Generative Adversarial /networks, 2017

Define a more 
tractable density 

function



Taxonomy of generative models
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I do not care about 
the shape, I just 
want to sample!



Next lectures

• Next Monday 10th, more on Generative models

• 3rd round of presentations this Friday à you will
receive feedback about the presentations

• Keep working on the projects!
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Other references

• Conditional Variational Autoencoders:
– Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. “Learning 

Structured Output Representation using Deep Conditional
Generative Models.” Advances in Neural Information 
Processing Systems. 2015.

– Xinchen Yan, Jimei Yang, Kihyuk Sohn, Honglak Lee, 
Attribute2Image: Conditional Image Generation from
Visual Attributes, ECCV, 2016 –

Prof. Leal-Taixé and Prof. Niessner 66



Other references
• Interesting read:

– Jacob Walker, Carl Doersch, Abhinav Gupta, Martial Hebert, An 
Uncertain Future: Forecasting from Static Images using Variational
Autoencoders, ECCV, 2016 

– Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo 
Larochelle, Ole Winther, Autoencoding beyond pixels using a learned
similarity metric, ICML, 2016 

– Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, David Forsyth, 
Learning Diverse Image Colorization, arXiv, 2016 

– Raymond Yeh, Ziwei Liu, Dan B Goldman, Aseem Agarwala, Semantic
Facial Expression Editing using Autoencoded Flow, arXiv, 2016 

– Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, 
Semi-Supervised Learning with Deep Generative Models, NIPS, 2014 
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