
Similarity learning



What can ML do for us?

• Classification problem
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What can ML do for us?

• Classification problem on ImageNet with thousands 
of categories
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What can ML do for us?

• Performance on ImageNet
– Size of the blobs indicates the number of parameters
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A. Canziani et al. „An Analysis of Deep Neural Network Models for Practical

Applications“. arXiv:1605.07678 2016

https://arxiv.org/abs/1605.07678


What can ML do for us?

• Regression problem: pose regression
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What can ML do for us?

• Regression problem: bounding box regression
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D. Held et al. „Learning to Track at 100 FPS with Deep Regression Networks“. ECCV 2016



What can ML do for us?

• Third type of problems
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What can ML do for us?

• Third type of problems

Prof. Leal-Taixé and Prof. Niessner 8
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Is it the same person?



What can ML do for us?

• Third type of problems: Similarity Learning
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Similarity Learning: when and why?

• Application: unlocking your iPhone with your face
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Similarity Learning: when and why?

• Application: unlocking your iPhone with your face
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Similarity Learning: when and why?

• Application: face recognition system so students can 
enter the exam room without the need for ID check
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Similarity Learning: when and why?

• Application: face recognition system so students can 
enter the exam room without the need for ID check
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What is the problem 
with this approach?

Scalability – we need to retrain our model every 
time a new student is registered to the course



Similarity Learning: when and why?

• Application: face recognition system so students can 
enter the exam room without the need for ID check
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Can we train one 
model and use it every 

year?



Similarity Learning: when and why?

• Learn a similarity function
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Similarity Learning: when and why?

• Learn a similarity function
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Similarity Learning: when and why?

• Learn a similarity function: testing
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Similarity Learning: when and why?

• Learn a similarity function
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Similarity learning

• How do we train a network to learn similarity?
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Siamese Neural 
Networks



Similarity learning

• How do we train a network to learn similarity?
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Similarity learning

• How do we train a network to learn similarity?
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Similarity learning

• Siamese network = shared weights
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Similarity learning

• Siamese network = shared weights

• We use the same network to obtain an encoding of 
the image

• To be done: compare the encodings 

Prof. Leal-Taixé and Prof. Niessner 24Taigman et al. „DeepFace: closing the gap to human level performance“. CVPR 2014 

f(A)



Similarity learning

• Distance function

• Training: learn the parameter such that

– If       and      depict the same person,                    is small

– If       and      depict a different person,                    is large
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d(A,B) = ||f(A)� f(B)||2

d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2

d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2



Similarity learning

• Loss function for a positive pair:

– If       and      depict the same person,                    is small
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d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2

L(A,B) = ||f(A)� f(B)||2



Similarity learning

• Loss function for a negative pair:

– If       and      depict a different person,                    is large

– Better use a Hinge loss
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d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2d(A,B) = ||f(A)� f(B)||2

L(A,B) = max(0,m2 � ||f(A)� f(B)||2)



Similarity learning

• Contrastive loss:
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L(A,B) = y⇤||f(A)� f(B)||2 + (1� y⇤)max(0,m2 � ||f(A)� f(B)||2)

Positive pair, 
reduce the distance 

between the 
elements 

Negative pair, 
brings the elements 
further apart up to a 

margin



Similarity learning

• Training the siamese networks

– You can update the weights for each channel 
independently and then average them

• This loss function allows us to learn to bring positive 
pairs together and negative pairs apart
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Triplet loss

• Triplet loss allows us to learn a ranking

We want: 
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Schroff et al „FaceNet: a unified embedding for face recognition and clustering“. CVPR 2015

Anchor (A) Positive (P) Negative (N)

||f(A)� f(P )||2 < ||f(A)� f(N)||2



Triplet loss

• Triplet loss allows us to learn a ranking

Prof. Leal-Taixé and Prof. Niessner 31

Schroff et al „FaceNet: a unified embedding for face recognition and clustering“. CVPR 2015

||f(A)� f(P )||2 < ||f(A)� f(N)||2

||f(A)� f(P )||2 � ||f(A)� f(N)||2 < 0

L(A,P,N) = ||f(A)� f(P )||2 � ||f(A)� f(N)||2 +m < 0

margin



Triplet loss

• Triplet loss allows us to learn a ranking
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Schroff et al „FaceNet: a unified embedding for face recognition and clustering“. CVPR 2015

||f(A)� f(P )||2 < ||f(A)� f(N)||2

||f(A)� f(P )||2 � ||f(A)� f(N)||2 < 0

L(A,P,N) = ||f(A)� f(P )||2 � ||f(A)� f(N)||2 +m < 0

L(A,P,N) = max(0, ||f(A)� f(P )||2 � ||f(A)� f(N)||2 +m)



Triplet loss

• Training with hard cases

• Train for a few epoch
• Choose the hard cases where
• Train with those to refine the distance learned 
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L(A,P,N) = max(0, ||f(A)� f(P )||2 � ||f(A)� f(N)||2 +m)

d(A,P ) ⇡ d(A,N)



Applications in vision



Establishing image correspondences
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Image from University of Washington



Establishing image correspondences
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Image from University of Washington



Establishing image correspondences

• Used in a wide range of Computer Vision applications

– Image stitching or image alignment

– Object recognition

– 3D reconstruction

– Object tracking

– Image retrieval

• Many of these applications are now targeted directly 

with Neural Networks as we will see in the course
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Establishing image correspondences

• Classic method pipeline

– Extract manually designed feature descriptors     

• Harris, SIFT, SURF: most are based on image gradients

• They suffer under extreme illumination or viewpoint 

changes

• Slow to extract dense features 

– Match descriptors from the two images

• Many descriptors are similar, one needs to filter out possible 

double matches and keep only reliable ones.

Prof. Leal-Taixé and Prof. Niessner 38Sameer Agarwal et al. „Building Rome in a Day“. ICCV 2009



• End-to-end learning for patch similarity

• Fast to allow dense extraction

• Invariant to a wide array of 
transformations (illumination, 
viewpoint)

Prof. Leal-Taixé and Prof. Niessner 39

S. Zagoruyko and N. Komodakis. „Learning to Compare Image Patches via Convolutional Neural Networks“. CVPR 2015

Establishing image correspondences

Siamese network



• Classic Siamese architecture

– Shared layers

• Simulated feature extraction

– One decision layer

• Simulates the matching
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S. Zagoruyko and N. Komodakis. „Learning to Compare Image Patches via Convolutional Neural Networks“. CVPR 2015

Establishing image correspondences



Image retrieval
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Radenovic et al.. „Fine-tuning CNN Image Retrieval with No Human Annotation“. TPAMI 2018



Unsupervised learning

• Learning from videos

– Tracking provides the 
supervision

– Use those as positive 
samples

– Extract random patches 
as negative samples
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Wang and Gupta. „Unsupervised Learning of Visual Representations using Videos“. ICCV 2015



Optical flow

• Input: 2 consecutive images (e.g. from a video)

• Output: displacement of every pixel from image A to 

image B

• Results in the “perceived” 2D motion, not the real 

motion of the object
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Optical flow
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Optical flow
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Optical flow with CNNs

• End-to-end supervised learning of optical flow
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P. Fischer et al. „FlowNet: Learning Optical Flow With Convolutional Networks“. ICCV 2015



Optical flow with CNNs
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P. Fischer et al. „FlowNet: Learning Optical Flow With Convolutional Networks“. ICCV 2015



FlowNet: architecture 1
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• Stack both images à input is now 2 x RGB = 6 channels



FlowNet: architecture 2
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• Siamese architecture



FlowNet : architecture 2
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• Two key design choices

How to combine the information

from both images?



Correlation layer

• Multiplies a feature vector with another feature vector
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Fixed operation. 
No learnable 

weights!



Correlation layer
• The matching score represents how correlated these 

two feature vectors are
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Correlation layer

• Useful for finding image correspondences
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I. Rocco et al. “Convolutional neural network architecture for
geometric matching. CVPR 2017.

Find a 
transformation 
from image A 

to image B

A

B



Correlation layer
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I. Rocco et al. “Convolutional neural network architecture for geometric matching. CVPR 2017.



FlowNet : architecture 2
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• Two key design choices

How to combine the information

from both images?

How to obtain high-

quality results?



FlowNet : architecture 2
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• Convolutions + pooling are great to allow aggregation of  
information from different parts of the image

• It also makes computation feasible!

• Problem: it reduces the size of our input, if we want full 
sized outputs (segmentation, optical flow) we need 
further operations



Refinement architecture
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Transpose convolution

• Recall
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Convolution
no padding, no stride Convolution

padding, stride



Transpose convolution

• We want to convert the
3x3 input into a 5x5 output

• Clever padding on the input
plus a normal convolution 

• Unpooling + conv = upconvolution
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More on that later

• Next step: Autoencoder architecture as to generate 
outputs of the same size as inputs
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Cool things you can do

• Savinov et al. „Quad-networks: unsupervised learning
to rank for interest point detection“. CVPR 2017

• Ristani & Tomasi. „Features for Multi-Target Multi-
Camera Tracking and Re-Identification“. CVPR 2018

• Chen et al. „Beyond triplet loss: a deep quadruplet
network for person re-identification“. CVPR 2017
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Next lecture

• No session on Friday

• Next Monday: more on advanced architectures
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