

Transfer Learning and Domain Adaptation

Prof. Leal-Taixé and Prof. Niessner

Biggest Criticism of Computer Vision

Works on constructed datasets, but not in the real world...

... and that's also true for deep learning

Prof. Leal-Taixé and Prof. Niessner

E.g., Multi-Dataset Efforts

	Stereo	MVS	Flow	Depth	Semantic	Instance
Middlebury	X	×	×			
KITTI	X		×	×	×	X
MPI Sintel			×			
ETH3D	Х	×				
HD1K			×			
ScanNet				×	×	×
Cityscapes					×	×
WildDash					×	×

Robust Vision Challenge: CVPR'18 [Geiger/Niessner/Pollefeys/Rother et al.]

Transfer Learning & Domain Adaptation

- Task
 - Image Classification
 - Image Segmentation
 - Object Instance Segmentation
 - ...
- Domain
 - Real data
 - Real != real: webcam model 1 vs webcam model 2; day vs night
 - Synthetic data
 - E.g., rasterization vs

Prof. Leal-Taixé and Prof. Niessner

...

Transfer Learning & Domain Adaptation

Prof. Leal-Taixé and Prof. Niessner

Transfer Learning

Same domain, different task

- Pre-trained Image Net (visual domain of real images)
 - Train on image classification

- Fine-tune on new task
 - E.g., semantic image segmentation
 - > keep 'backbone the same, fine-tune 'head' layers
 - > assumption: visual features generalize within domain

Transfer Learning

Same task, different domain

- Pre-trained Image Net (visual domain of real images)
 Train on image classification
- Fine-tune on new task
 - Now need to train *entire* network, cuz input features will be different
 - Training only a few layers at the end is less likely to fundamentally solve it

Fine Tuning

- How much labeled data in the target domain?
 - Zero-shot learning
 - One-shot learning
 - Few-shot learning

 Just 'throwing in as much data as we can' seems somewhat unsatisfactory...

Domain Adaption

Applications to different types of domain shift

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

Results on Cityscapes to SF adaptation

Before domain confusion

After domain confusion

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation, Judy Hoffman, Dequan Wang, Fisher Yu, Trevor Darrell, Arxiv 2016

Cycle-Consistent Adversarial Domain Adaptation

Cycle-Consistent Adversarial Domain Adaptation

Exam

• Slides provide additional references (use them)

• Look up the important papers that we discussed

- Understanding of
 - high-level concepts
 - underlying math
 - architecture design

Administrative

- Deadline for final projects
 - Wed Feb 6th, 11:59pm
 - Submission via moodle
 - Submission must contain
 - Code (results must be replicable)
 - 2-3 pages of final report (at most 1 page of text, rest results; i.e., images and tables)
 - Use CVPR templates: <u>http://cvpr2019.thecvf.com/submission/main_conference/</u> <u>author_guidelines</u>

Administrative

- Poster presentation
 - Friday Feb 8th, 1pm-3pm
 - Location:
 - Magistrale (preliminary will update if it changes)
 - In the area next to the back entrance (parking lot direction)
 - Poster stands will be provided
 - You need to print posters yourself (<u>poster@in.tum.de</u>)
 - Hang posters 15 mins before presentation session starts

Guest Speakers

- Oriol Vinyals:
 - <u>https://ai.google/research/people/OriolVinyals</u>
 - Time: January 31st, 6pm 8pm
 - Location: HS-1 (CS building the big one)

Prof. Leal-Taixé and Prof. Niessne

Next Lectures

This was the last lecture $oldsymbol{\Im}$