

More Generative Models ©

Prof. Leal-Taixé and Prof. Niessner

Conditional GANs on Videos

- Challenge:
 - Each frame is high quality, but temporally inconsistent

Video-to-Video Synthesis

• Sequential Generator:

$$p(\tilde{\mathbf{x}}_1^T | \mathbf{s}_1^T) = \prod_{t=1}^T p(\tilde{\mathbf{x}}_t | \tilde{\mathbf{x}}_{t-L}^{t-1}, \mathbf{s}_{t-L}^t).$$

past L generated frames past L source frames (set L = 2)

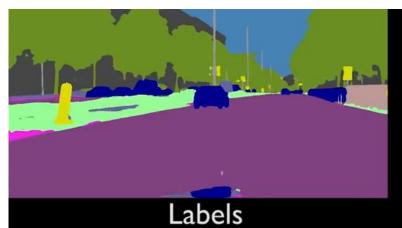
- Conditional Image Discriminator D_i (is it real image)
- Conditional Video Discriminator D_{ν} (temp. consistency via flow)

Full Learning Objective:

$$\min_{F} \left(\max_{D_{I}} \mathcal{L}_{I}(F, D_{I}) + \max_{D_{V}} \mathcal{L}_{V}(F, D_{V}) \right) + \lambda_{W} \mathcal{L}_{W}(F),$$

3

Video-to-Video Synthesis



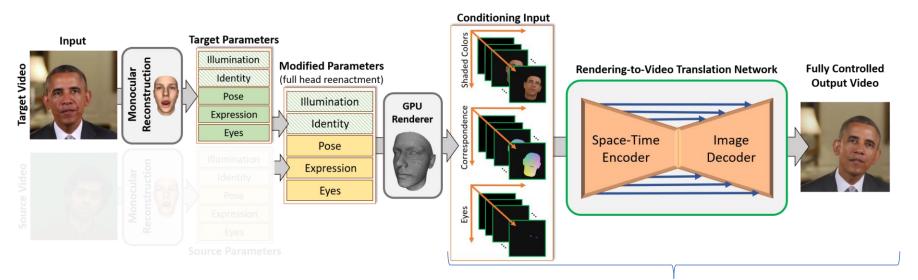
pix2pixHD

d

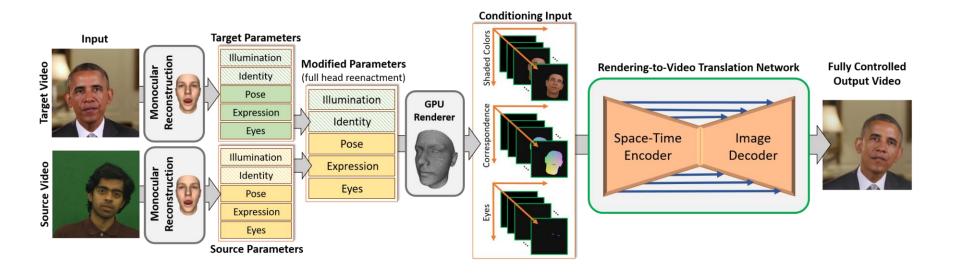
Video-to-Video Synthesis

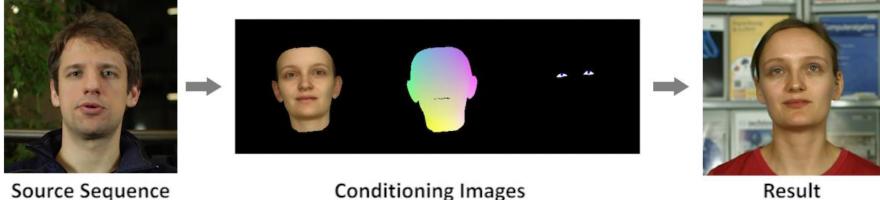
- Key ideas:
 - Separate discriminator for temporal parts
 - In this case based on optical flow
 - Consider recent history of prev. frames
 - Train all of it jointly

5



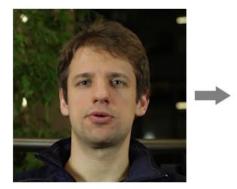
Similar to "Image-to-Image Translation" (Pix2Pix) [Isola et al.]





Source Sequence

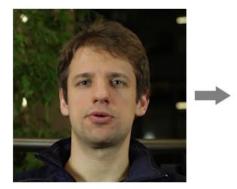
Neural Network converts synthetic data to realistic video



Source Sequence

Conditioning Images

Result



Source Sequence

Conditioning Images

Result

Interactive Video Editing

2x speed

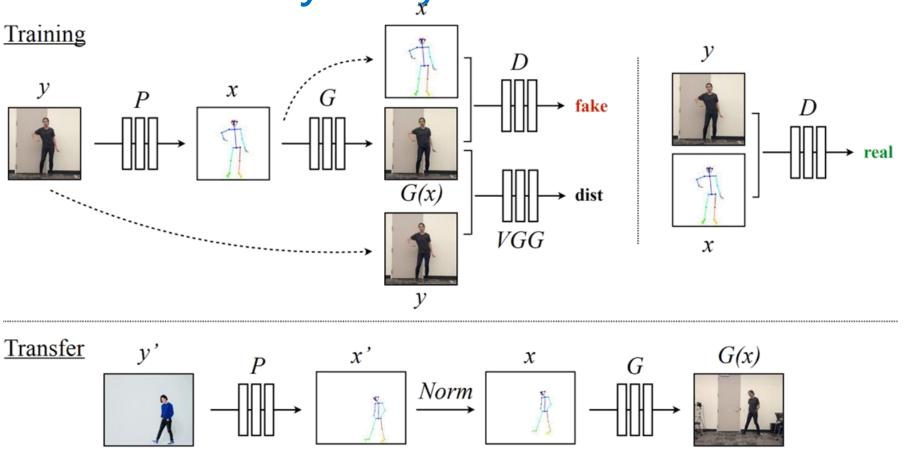
Deep Video Portraits: Insights

- Synthetic data for tracking is great anchor / stabilizer
- Overfitting on small datasets works pretty well
- Need to stay within training set w.r.t. motions
- No real learning; essentially, optimizing the problem with SGD
 - -> should be pretty interesting for future directions

Everybody Dance Now

[Chan et al. '18] Everybody Dance Now

Everybody Dance Now



[Chan et al. '18] Everybody Dance Now

Everybody Dance Now

Source Subject

[Chan et al. '18] Everybody Dance Now

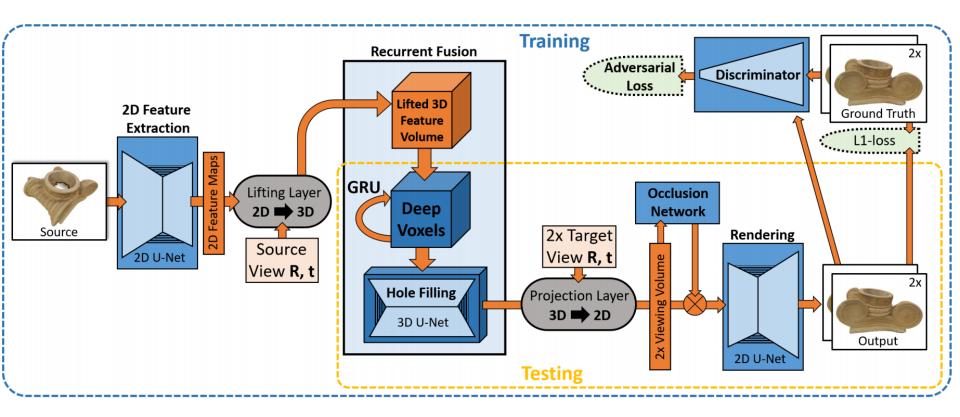
Everybody Dance Now: Insights

- Conditioning via tracking seems promising!
 - Tracking quality translates to resulting image quality
 - Tracking human skeletons is less developed than faces
 - Temporally it' s not stable... (e.g., OpenPose etc.)
 - Fun fact, there were like 4 papers with a similar same idea that appeared around the same time...

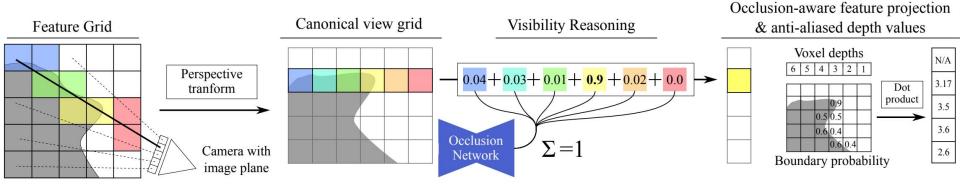
[Sitzmann et al. '18] Deep Voxels

- Main idea for video generation:
 - Why learn 3D operations with 2D Convs !?!?
 - We know how 3D transformations work
 - E.g., 6 DoF rigid pose [R|t]
 - Incorporate these into the architectures
 - Need to be differentiable!
 - Example application: novel view point synthesis
 - Given rigid pose, generate image for that view

[Sitzmann et al.'18] Deep Voxels



[Sitzmann et al. '18] Deep Voxels



Issue: we don' t know the depth for the target!

- -> Per-pixel softmax along the ray
- -> Network learns the depth

DeepVoxels

Best Baseline: Pix2Pix [Isola et al. 2017]



Pix2Pix [Isola et al. 2017] ABCEFFELFEKDKEN ABCEFFE JKIN NOPORSTVXVWXYZ NOPCFEEVWXYZ ABCDEFGHIJKLM ABGTEFFEJKLM NOPORSTUVWXYZ NOPOPERVWXYZ ABCDEFGHIJKIM ABCEFJEJKD VOPORSTUVWXYZ NOFLE ABCDEFGHIJKLABBE NOPORSUUVWXXDROP ABODERGHLIKI STEFHTUKIA

DeepVoxels (Ours)

ABCDEFGHIJKLM ABCDEFGHIJELA NOPQRSTUVWXYZ NOPQRSTUVWZYZ ASCDEFGHIJKLM ABCDEFGHIJKIN NOPORSTUVWXYZ NOPORSTUVWXY ASCDEFGHT JKLM A BCDEFGHLJKL NOPORSTUVWXYZ NOPORS ASCDEFGHIJKLM ABC MOPORSTUVWXYZ NOPORS ASCDEFGHIJKLM ABCDEFGHIJKIN

Deep Voxels: Insights

Lifting from 2D to 3D works great
 No need to take specific care for temp. coherency!

• All 3D operations are differentiable

Currently, only for novel view-point synthesis
 – I.e., cGAN for new pose in a given scene

Neural Rendering with Neural Textures

Autoregressive Models

Prof. Leal-Taixé and Prof. Niessner

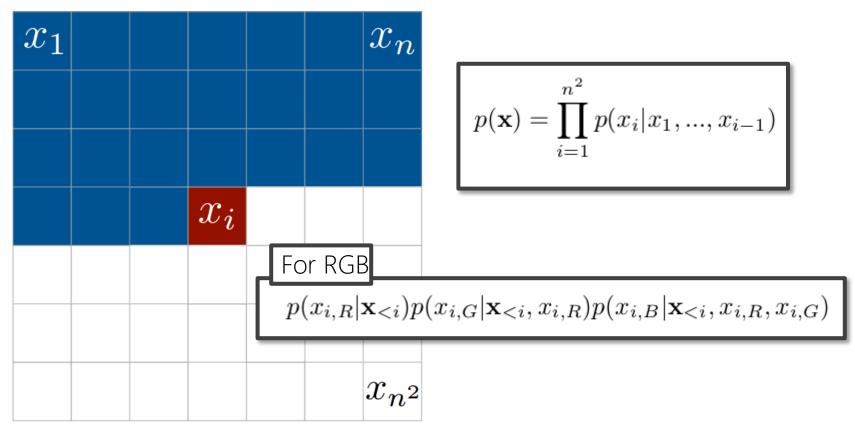
Autoregressive Models vs GANs

GANs learn implicit data distribution
– i.e., output are samples (distribution is in model)

 Autoregressive models learn an explicit distribution governed by a prior imposed by model structure

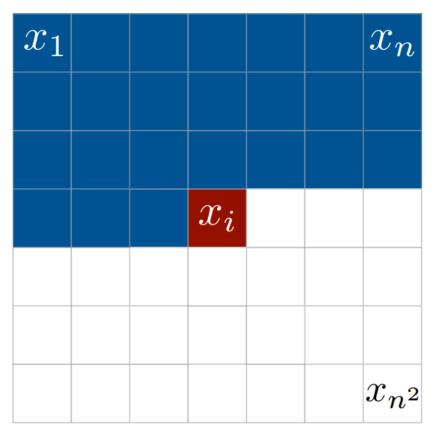
 i.e., outputs are probabilities (e.g., softmax)

- Goal: model distribution of natural images
- Interpret pixels of an image as product of conditional distributions
 - Modeling an image \rightarrow sequence problem
 - Predict one pixel at a time
 - Next pixel determined by all previously predicted pixels
 - ➤ Use a Recurrent Neural Network



Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]



$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, ..., x_{i-1})$$

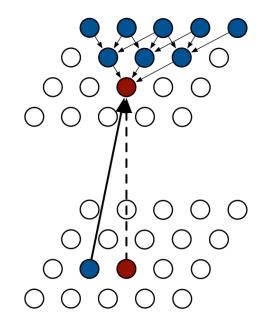
$$x_i \in [0,255]$$

 $\rightarrow 256$ -way softmax

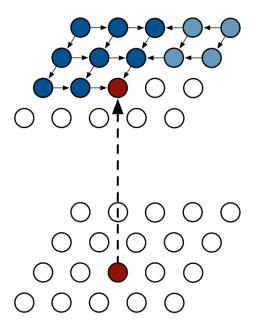
[Van den Oord et al 2016]

Prof. Leal-Taixé and Prof. Niessner

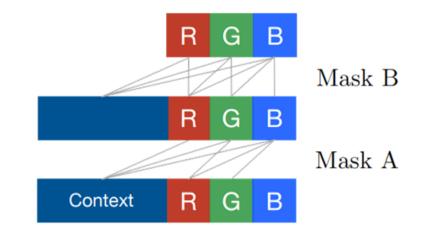
- Row LSTM model architecture
- Image processed row by row
- Hidden state of pixel depends on the 3 pixels above it
 - Can compute pixels in row in parallel
- Incomplete context for each pixel



- Diagonal BiLSTM model
 architecture
- Solve incomplete context problem
- Hidden state of pixel $p_{i,j}$ depends on $p_{i,j-1}$ and $p_{i-1,j}$
- Image processed by diagonals

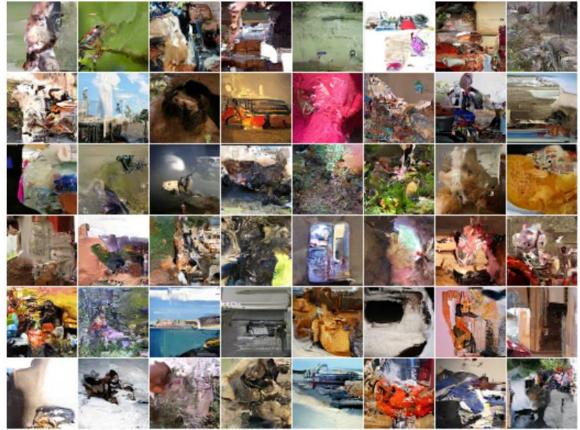


- Masked Convolutions
- Only previously predicted values can be used as context
- Mask A: restrict context during 1st conv
- Mask B: subsequent convs
- Masking by zeroing out values



 Generated 64x64 images, trained on ImageNet

PixelRNN



Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]

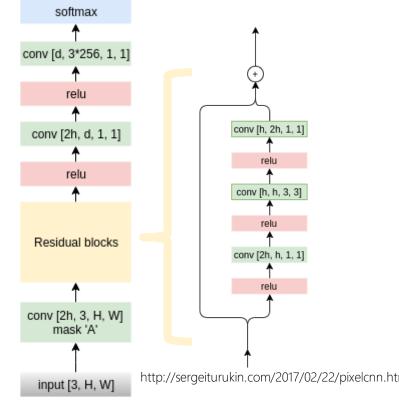
PixelCNN

- Row and Diagonal LSTM layers have potentially unbounded dependency range within the receptive field
 - Can be very computationally costly
- \succ PixelCNN:
 - standard convs capture a bounded receptive field
 - All pixel features can be computed at once (during training)

PixelCNN

- Model preserves spatial dimensions
- Masked convolutions to avoid seeing future context

1	1	1	1	1	
1	1	1	1	1	
1	1	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
Mask A					



[Van den Oord et al 2016]

Prof. Leal-Taixé and Prof. Niessner

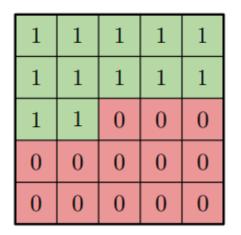
Gated PixelCNN

- Gated blocks
- Imitate multiplicative complexity of PixelRNNs to reduce performance gap between PixelCNN and PixelRNN
- Replace ReLU with gated block of sigmoid, tanh

$$k^{\text{th}} \text{ layer sigmoid}$$

 $y = \tanh(W_{k,f} * x) \odot \sigma(W_{k,g} * x)$
element-wise product convolution

PixelCNN Blind Spot



5x5 image / 3x3 conv

Receptive Field

Unseen context

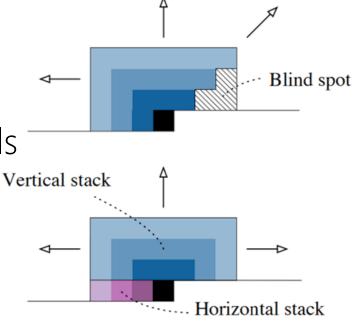
http://sergeiturukin.com/2017/02/24/gated-pixelcni

[Van den Oord et al 2016]

Prof. Leal-Taixé and Prof. Niessner

PixelCNN: Eliminating Blind Spot

- Split convolution to two stacks
- Horizontal stack conditions on current row
- Vertical stack conditions on pixels above



Conditional PixelCNN

- Conditional image generation
- E.g., condition on semantic class, text description

latent vector to be conditioned on

$$y = \tanh\left(W_{k,f} * x + V_{k,f}^T h\right) \odot \sigma\left(W_{k,g} * x + V_{k,g}^T h\right)$$

Conditional PixelCNN

Coral Reef

Sorrel horse

Prof. Leal-Taixé and Prof. Niessner

[Van den Oord et al 2016]

Autoregressive Models vs GANs

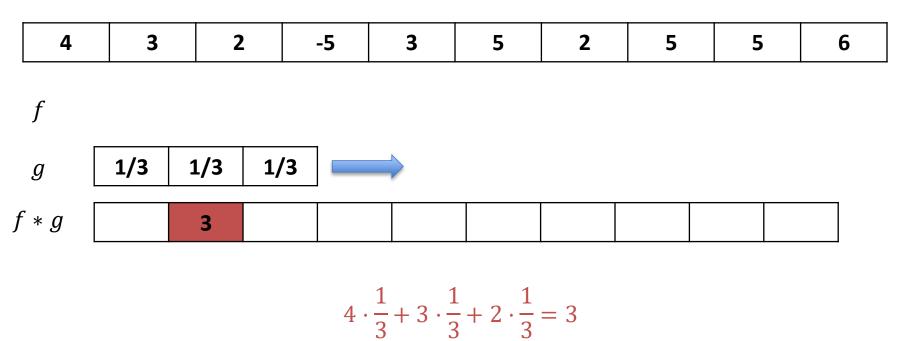
- Advantages of autoregressive:
 - Explicitly model probability densities
 - More stable training
 - Can be applied to both discrete and continuous data
- Advantages of GANs:
 - Have been empirically demonstrated to produce higher quality images
 - Faster to train

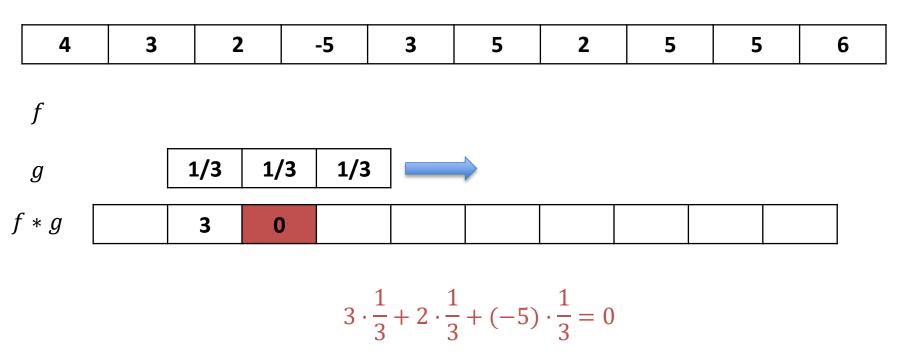
Deep Learning in Higher Dimensions

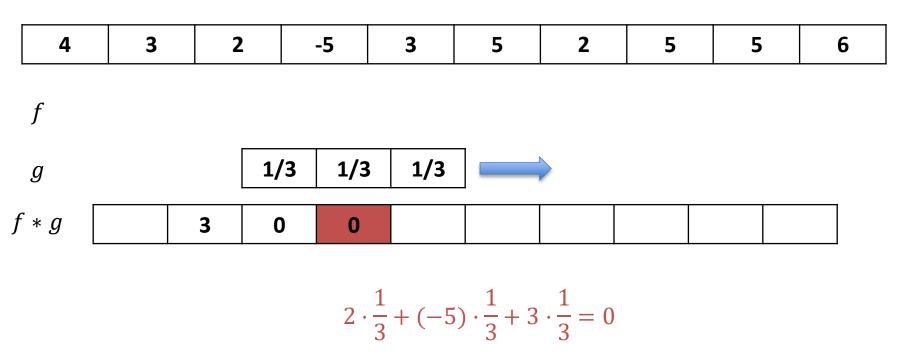
Prof. Leal-Taixé and Prof. Niessner

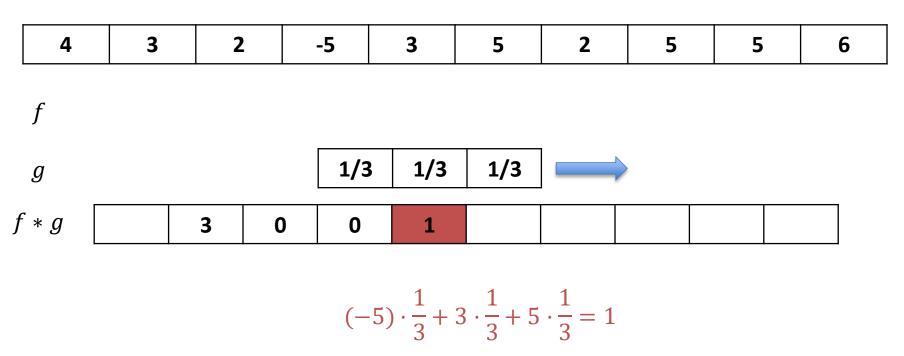
Multi-Dimensional ConvNets

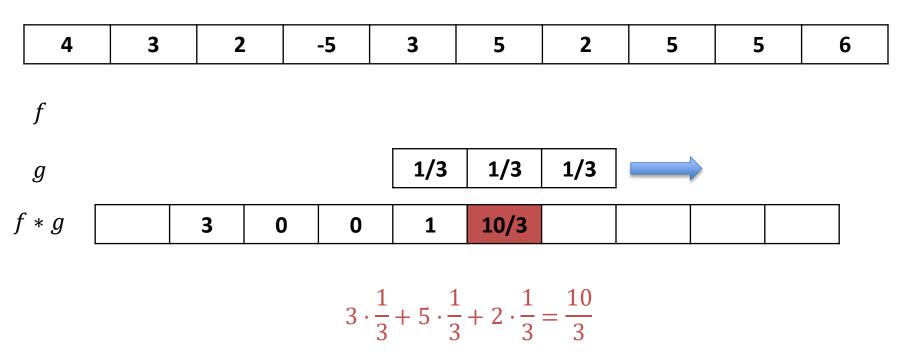
- 1D ConvNets
 - Audio / Speech
 - Also Point Clouds
- 2D ConvNets
 - Images (AlexNet, VGG, ResNet -> Classification, Localization, etc..)
- 3D ConvNets
 - For videos
 - For 3D data
- 4D ConvNets
 - E.g., dynamic 3D data (Haven' t seen much work there)
 - Simulations

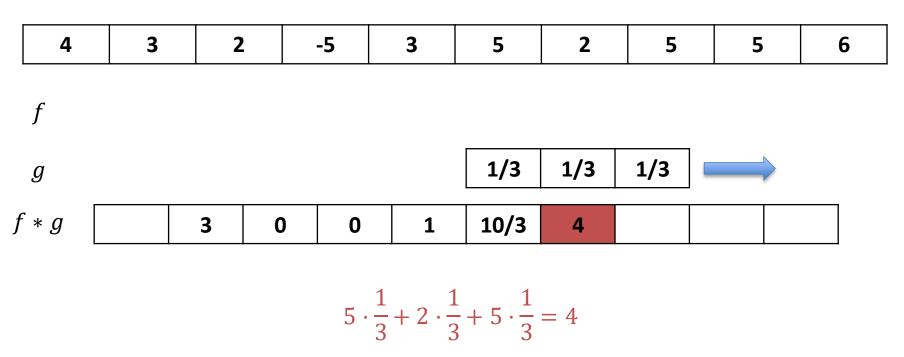


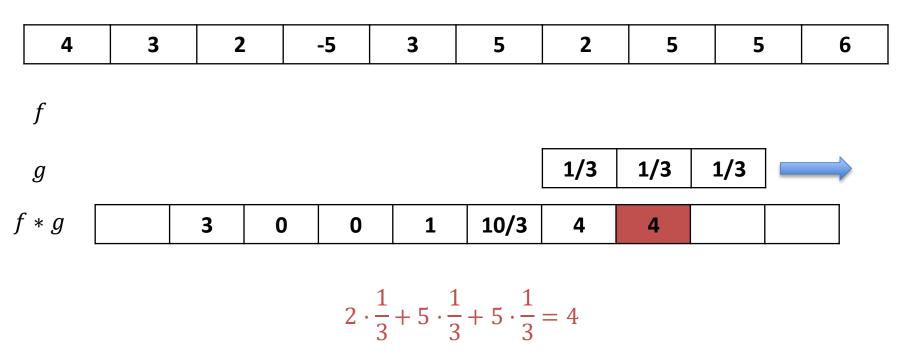


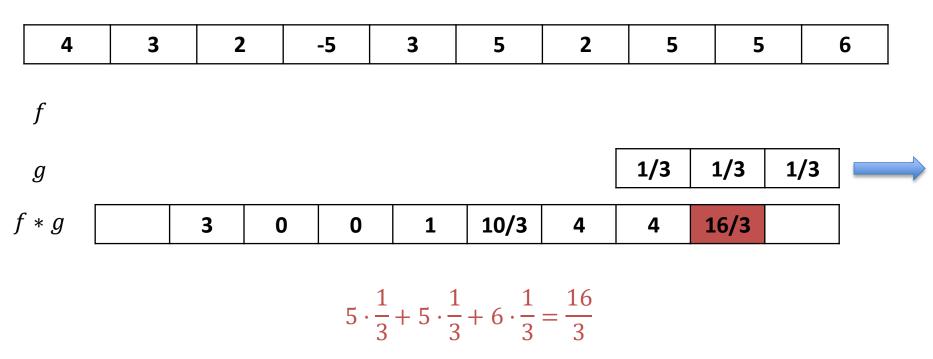










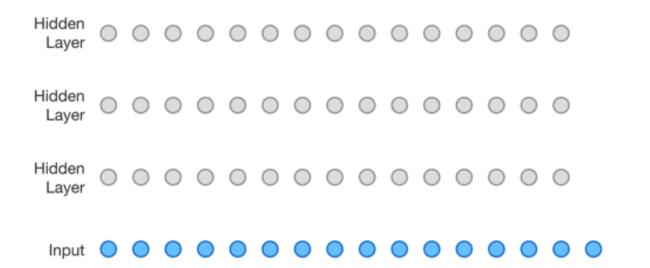


1D ConvNets: WaveNet

1 Second

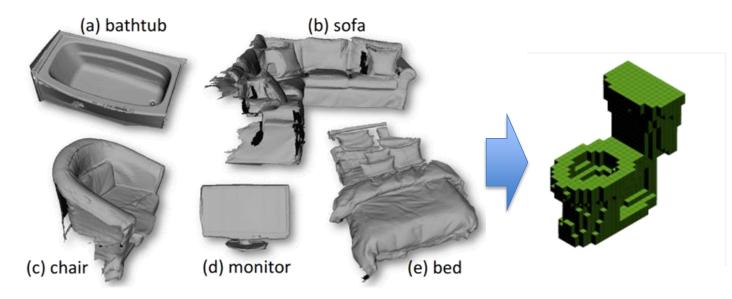
[van der Ooord 16] <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>

1D ConvNets: WaveNet



[van der Ooord 16] <u>https://deepmind.com/blog/wavenet-generative-model-raw-audio/</u>

3D Classification



Instance: 010.toilet_000000079.001 Predicted label: toilet True label: toilet

Class from 3D model (e.g., obtained with Kinect Scan)

[Maturana et al. 15] & [Qi et al. 16] 3D vs Multi-view

3D Semantic Segmentation

1500 densely annotated 3D scans; 2.5 mio RGB-D frames

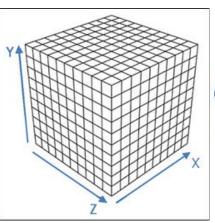
[Dai et al. 17] ScanNet

Volumetric Grids

Volumetric Grids

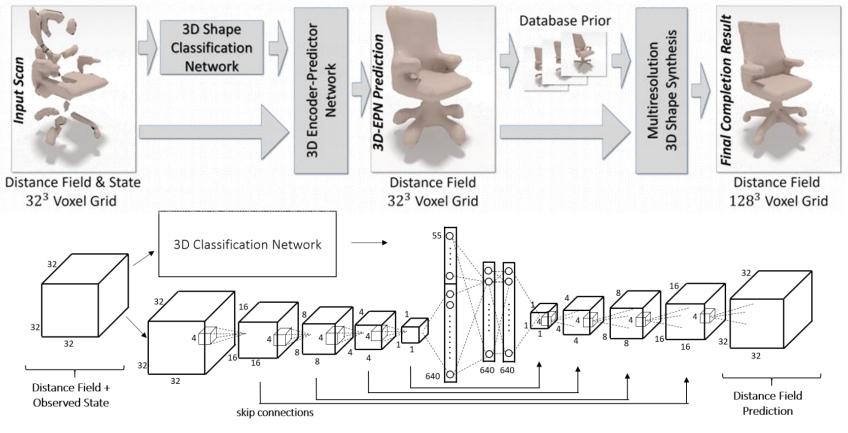
Volumetric Data Structures

- Occupancy grids
- Ternary grids
- Distance Fields
- Signed Distance fields



Method	ℓ_1 -Err (32 ³)	ℓ_1 -Err (128 ³)		
Ours (3D-EPN + synth)	0.382	1.94		
Ours (3D-EPN-class + synth)	0.376	1.93		
Ours (3D-EPN-unet + synth)	0.310	1.82		
Ours (final)	0.309	1.80		
3D-EPN-unet-class + synth				
Shape completion error (higher == better)				

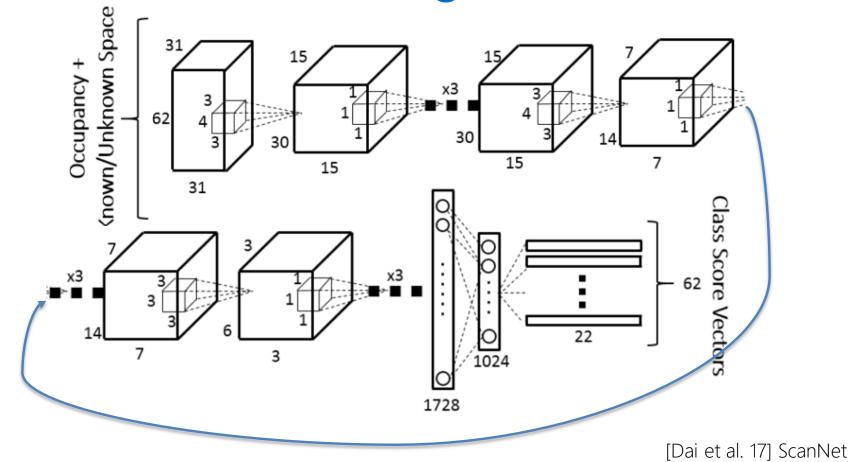
3D Shape Completion on Grids



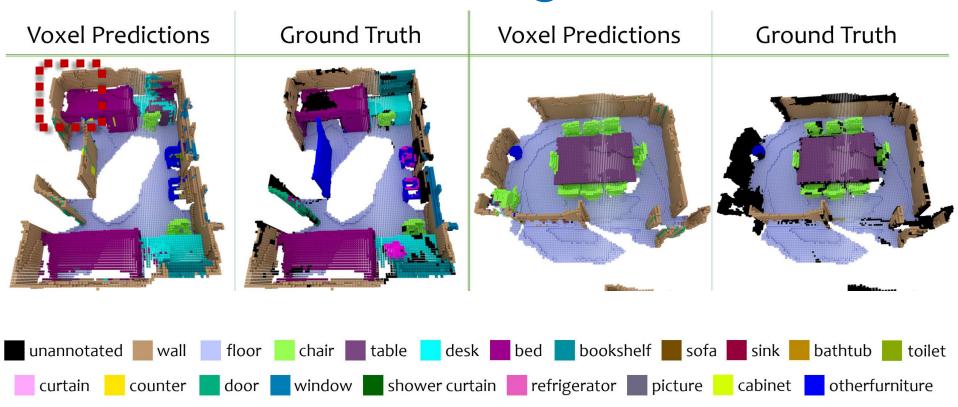
Works with 32 x 32 x 32 voxels...

[[]Dai et al. 17] CNNComplete

ScanNet: Semantic Segmentation in 3D

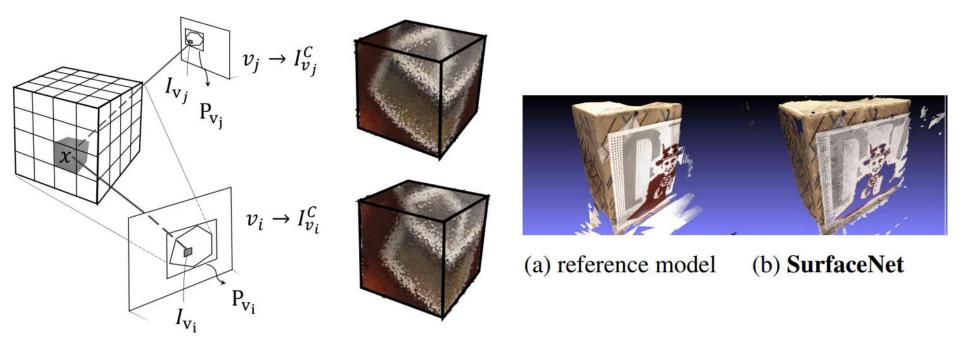


ScanNet: Sliding Window



[Dai et al. 17] ScanNet

SurfaceNet: Stereo Reconstruction

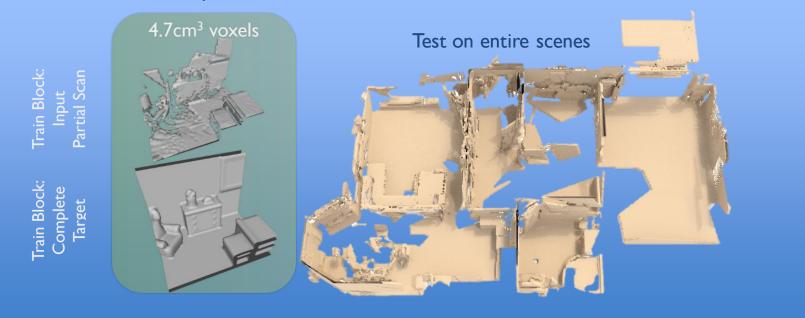


Run on 32 x 32 x 32 blocks -> takes forever...

[Ji et al. 17] SurfaceNet

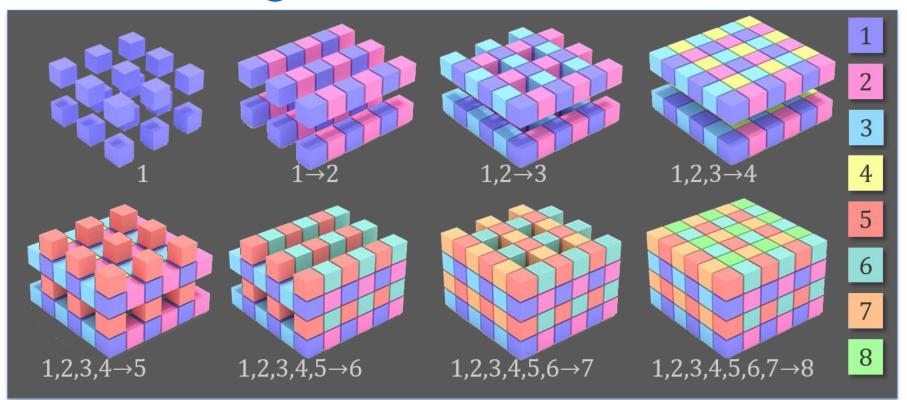
ScanComplete: Fully Convolutional

Train on crops of scenes



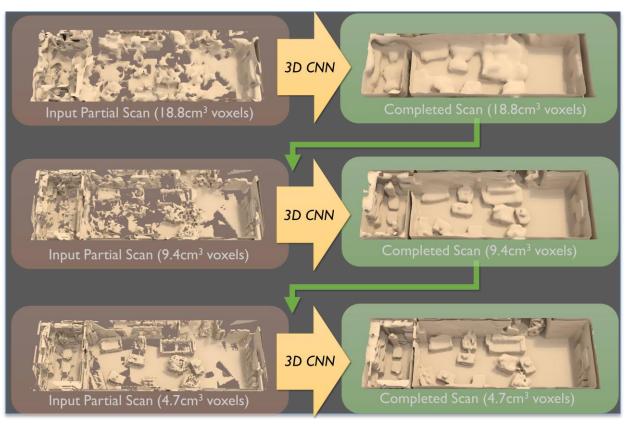
[Dai et al. 18] ScanComplete

Dependent Predictions: Autoregressive Neural Networks



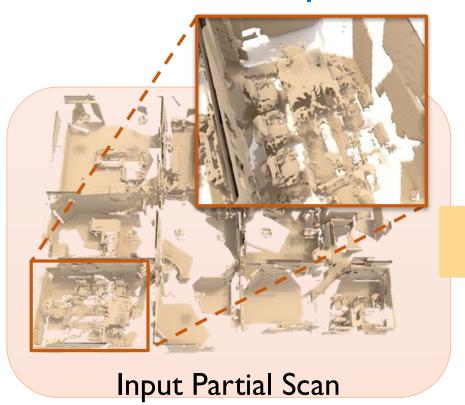
Prof. Leal-Taixé and Prof. Niessner

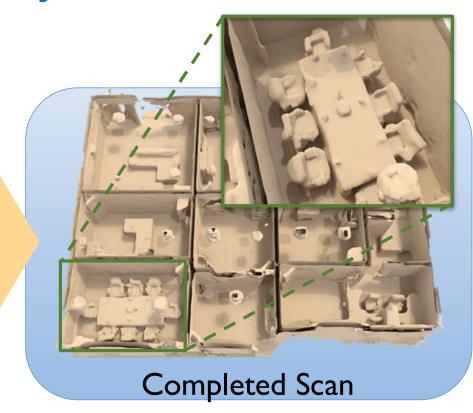
Spatial Extent: Coarse-to-Fine Predictions



Prof. Leal-Taixé and Prof. Niessner

ScanComplete: Fully Convolutional



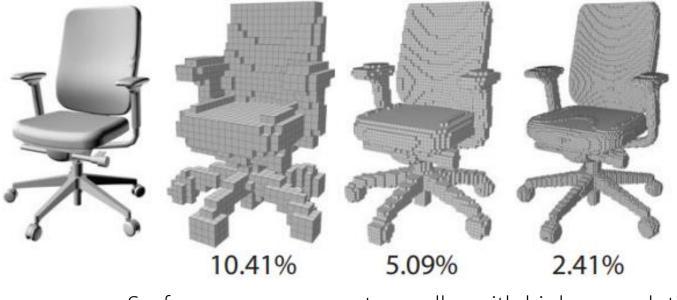


[Dai et al. 18] ScanComplete

Conclusion so far

- Volumetric Grids are easy
 - Encode free space
 - Encode distance fields
 - Need a lot of memory
 - Need a lot of processing time
 - But can be used sliding window or fully-conv.

Conclusion so far



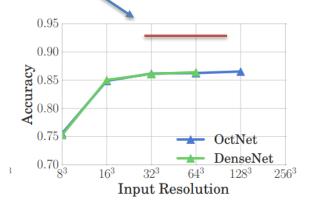
Surface occupancy gets smaller with higher resolutions

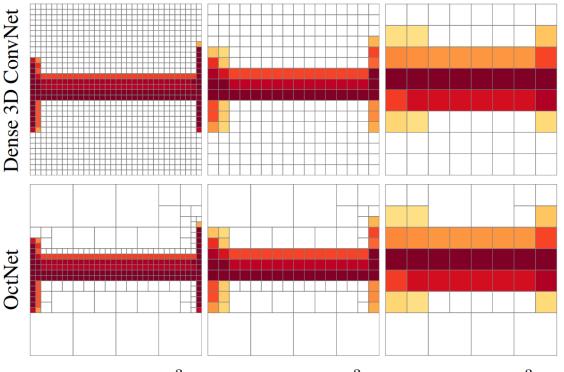
Volumetric Hierarchies

Discriminative Tasks

Structure is known in advance!

State of the art is somewhere here...

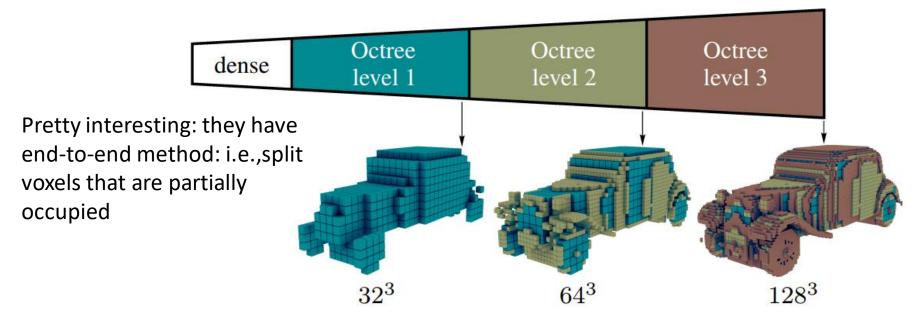




(b) Accuracy (a) Layer 1: 32^3 (b) Layer 2: 16^3 (c) Layer 3: 8^3 OctNet: Learning Deep 3D Representations at High Resolutions (CVPR 2017) O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis (SIG17)

Generative Tasks

Need to infer structure!



Octree Generating Networks: Efficient Convolutional Architectures for High-resolution Outputs OctNetFusion: Learning Depth Fusion from Data (that one not end to end)

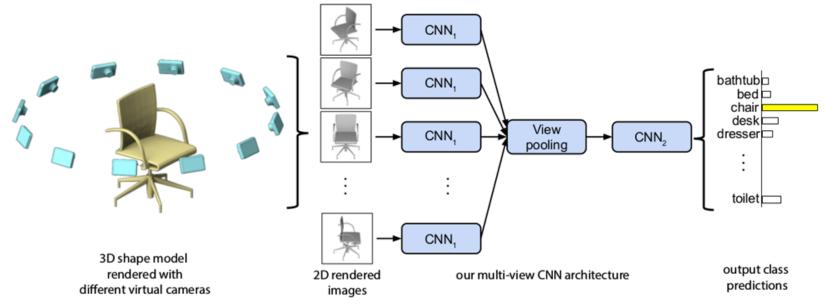
Conclusion so far

- Hierarchies
 - are great for reducing memory and runtime
 - Comes at a performance hit
 - Easier for discriminative tasks when structure is known

Multi-view

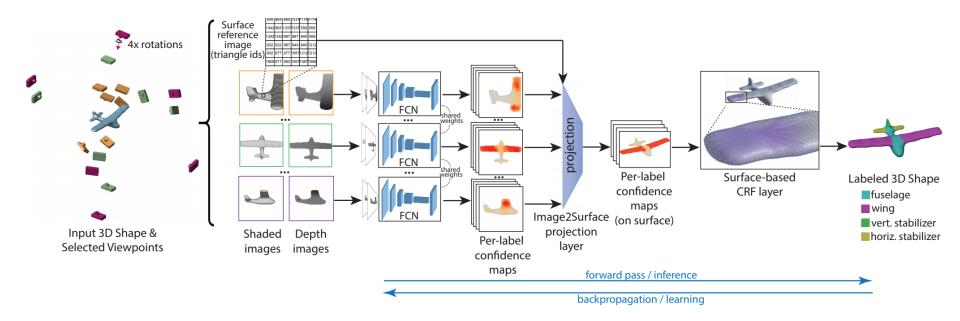
Multiple Views: Classification

- RGB images from fixed views around object:
 - view pooling for classification (only RGB; no spatial corr.)



Multi-view Convolutional Neural Networks for 3D Shape Recognition

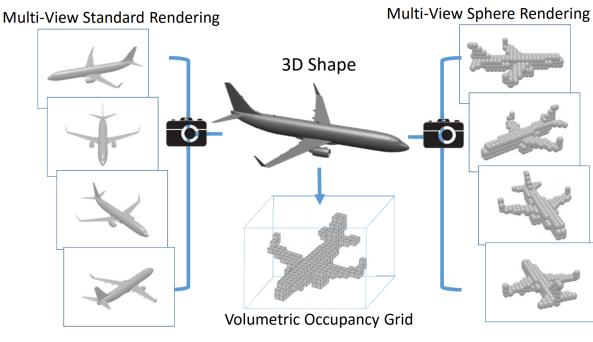
Multiple Views: Segmentation



3D Shape Segmentation with Projective Convolutional Networks

This one is interesting in a sense that it does 3D shape segmentation (only on CAD models) But it uses multi-view and has a spatial correlation on top of the mesh surface

Fun thing...



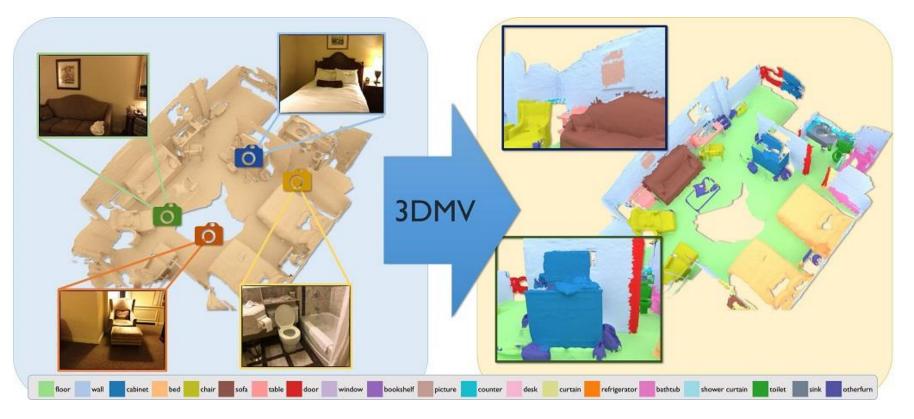
Method	#Views	Accuracy (class)	Accuracy (instance)		
SPH (reported by [33])	-	68.2			
LFD (reported by [33])	-	75.5	-		
FV (reported by [32])	12	84.8	-		
Su-MVCNN [32]	80	90.1	. 		
PyramidHoG-LFD	20	87.2	90.5		
Ours-MVCNN	20	89.7	92.0		
Ours-MVCNN-MultiRes	20	91.4	93.8		

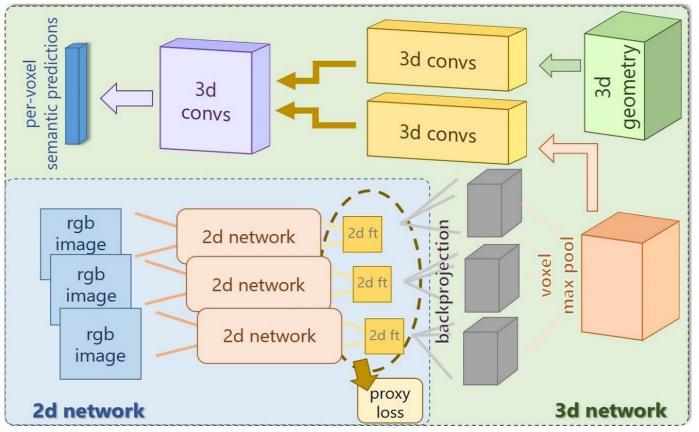
Table 3. Comparison of multi-view based methods. Numbers reported are classification accuracy (class average and instance average) on ModelNet40.

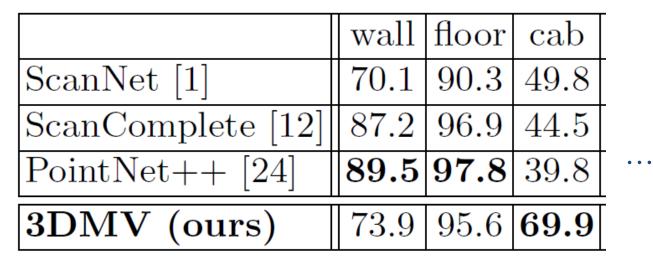
Figure 1. 3D shape representations.

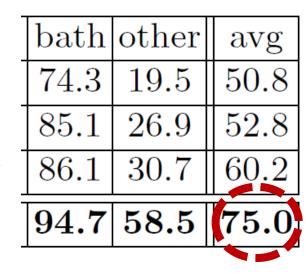
Volumetric and Multi-View CNNs for Object Classification on 3D Data

Hybrid: Volumetric + Multi-view









	wall	floor	cab		ζ	bath	other	avg
2d only (1 view)	37.1	39.1	26.7		2	36.3	20.4	27.1
2d only (3 views)	58.6	62.5	40.8	_	7	61.5	34.3	44.2
Ours (no geo input)	76.2	92.9	59.3)	80.8	9.3	58.2
Ours (3d geo only)	60.4	95.0	54.4		3	87.0	20.6	54.4
Ours (3d geo+voxel color)	58.8	94.7	55.5	_	4	85.4	20.5	55.9
Ours (1 view, fixed 2d)	77.3	96.8	70.0	• • •	6	87.0	58.5	69.1
Ours (1 view)	70.7	96.8	61.4		5	81.6	51.7	70.1
Ours (3 view, fixed 2d)	81.1	96.4	58.0		1	92.5	60.7	72.8
Ours (3 view)	75.2	97.1	66.4		1	89.9	57.2	73.0
Ours (5 view, fixed 2d)	77.3	95.7	68.9	1	7	93.5	59.6	74.5
Ours (5 view)	73.9	95.6	69.9		3	94.7	58.5	75.0

Conclusion so far

- Hybrid:
 - Nice way to combine color and geometry
 - Great performance (best so far for segmentation)
 - End-to-end helps less than we hoped for
 - Could be faster...

Next Lectures

- Next Lecture -> Jan 28th
 - Domain Adaptation and Transfer Learning
 - Possible graphs if time permits

• Keep working on the projects!