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What we assume you know
• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture

• PyTorch (can use TensorFlow…)

• You have trained already several models and know 
how to debug problems, observe training curves, 
prepare training/validation/test data.
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What is a Neural 
Network?
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Neural Network
• Linear score function 𝑓 = 𝑊𝑥
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On CIFAR-10

On ImageNet
Credit: Li/Karpathy/Johnson



Neural Network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers 
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Neural Network
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2-layer network: 𝑓 = 𝑊2max(0,𝑊1𝑥)

𝑥
ℎ𝑊1

128 × 128 = 16384 1000

𝑓𝑊2
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1-layer network: 𝑓 = 𝑊𝑥

𝑥
𝑊

128 × 128 = 16384

𝑓
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Neural Network
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Credit: Li/Karpathy/Johnson



Loss functions
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Neural networks
What is the shape of this function?
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Loss 
(Softmax, 

Hinge)

Prediction



Loss functions
• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)
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Evaluate the ground 
truth score for the 
image



Loss functions
• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well enough”
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Activation functions
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Sigmoid
Forward
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Saturated 
neurons kill the 
gradient flow



Problem of positive output
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More on zero-
mean data later



tanh
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Zero-
centered

Still saturates

Still saturates

LeCun 1991



Rectified Linear Units (ReLU)
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Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU



Maxout units
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Generalization 
of ReLUs

Linear 
regimes

Does not 
die

Does not 
saturate

Increase of the number of parameters



Optimization

Prof. Leal-Taixé and Prof. Niessner 18



Gradient Descent for Neural Networks
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Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch
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𝑘 now refers to 𝑘-th iteration 

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch 



Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!
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Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel



Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1
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Step will be largest when a sequence of 
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9



RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖
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Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!



RMSProp
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Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients 
-> second momentum

Can increase learning rate!



Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖
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First momentum: 
mean of gradients

Second momentum: 
variance of gradients



Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖
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𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2



Convergence

27



Training NNs
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Importance of Learning Rate
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Over- and Underfitting
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Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017 



Over- and Underfitting
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Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html



Basic recipe for machine learning
• Split your data
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Find your hyperparameters

20%

train testvalidation

20%60%



Basic recipe for machine learning
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Regularization
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Regularization
• Any strategy that aims to
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Lower 
validation error

Increasing 
training error



Data augmentation
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Early stopping
Training time is also a hyperparameter
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Overfitting



Bagging and ensemble methods 
• Bagging: uses k different datasets
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Training Set 1 Training Set 2 Training Set 3



Dropout
• Disable a random set of neurons (typically 50%)

39Prof. Leal-Taixé and Prof. Niessner Srivastava 2014
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How to deal with 
images?
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Using CNNs in Computer Vision
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Image filters
• Each kernel gives us a different image filter
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Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean
1

9

1 1 1
1 1 1
1 1 1

Gaussian blur
1

16

1 2 1
2 4 2
1 2 1



Convolutions on RGB Images
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32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

Convolve

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are 
28 × 28 locations



Convolution Layer
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32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Convolve

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”
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CNN Prototype
ConvNet is concatenation of Conv Layers and activations

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20



CNN learned filters
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Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output



Classic CNN 
architectures

Prof. Leal-Taixé and Prof. Niessner 48



LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, height        Number of filters
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60k parameters



AlexNet

• Softmax for 1000 classes
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[Krizhevsky et al. 2012]



VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2
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[Simonyan and Zisserman 2014]



VGGNet
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Conv=3x3,s=1,same
Maxpool=2x2,s=2

Still very common: VGG-16



ResNet
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[He et al. 2015]



ResNet

- Xavier/2 init by He et al.
• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout
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[He et al. 2015]



ResNet
• If we make the network deeper, at some point 

performance starts to degrade

• Too many parameters, 
the optimizer cannot 
properly train the network
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ResNet
• If we make the network deeper, at some point 

performance starts to degrade
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Inception layer
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GoogLeNet: using the inception layer
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[Szegedy et al. 2014]

Inception block



CNN Architectures

Prof. Leal-Taixé and Prof. Niessner 59



Recurrent Neural 
Networks
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Basic structure of a RNN
• Multi-layer RNN
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Outputs

Inputs

Hidden 
states

The hidden state 
will have its own 
internal dynamics

More expressive 
model!



Basic structure of a RNN
• We want to have notion of “time” or “sequence”

Prof. Leal-Taixé and Prof. Niessner 62

Hidden 
state

Same parameters for 
each time step = 
generalization!

Output



Long-Short Term Memory Units
• LSTM
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ADL4CV Content
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Rough Outline
• Lecture 1: introduction
• Lecture 2: advanced architectures (e.g. siamese, capsules, attention) 
• Lecture 3: advanced architectures con’t
• Lecture 4: Visualization, t-sne, grad-cam (active heatmaps), deep dream, 

excitation backprop
• Lecture 5: Bayesian Deep Learning
• Lecture 6: Autoencoders, VAE

Lecture 7: GANs 1: Generative models, GANs.
• Lecture 8: GANs 2: Generative models, GANs
• Lecture 9: CNN++ / Audio<->Visual - autoregressive, pixelcnn
• Lecture 10: RNN -> NLP <-> Visual Q&A (focus on the cross domain: CNN 

for image, RNN for text) / 
• Lecture 11: Multi-dimensional CNN, 3D DL, video DL: pooling vs fully-conv, 

operations… Self-supervised / unsupervised learning
• Lecture 12: Domain Adaptation / Transfer Learning
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How to train your 
neural network?

Prof. Leal-Taixé and Prof. Niessner 66



Is data loading correct?
• Data output (target): overfit to single training sample 

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training 
samples
– It’s now conditioned on input data

• Save and re-load data from PyTorch / TensorFlow
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Network debugging
• Move from overfitting to a hand-full of samples

– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current 
number of samples?

• Always be aware of network parameter count!
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Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression, train 

from SSD – e.g., network training is good idea
– Speed up backprop: 

• Estimate total timings: how long until you see some 
pattern? How long till convergence?
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Network Architecture
• 100% mistake so far: “let’s use super big network and 

train for two weeks and we see where we stand.” 
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb 
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!
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Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size, and 

now I also trained 5 days longer” – it’s better, but WHY?
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Overfitting
ONLY THINKG ABOUT THIS ONCE YOU’R TRAINING LOSS 
GOES DOWN AND YOU CAN OVERFIT!

Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better
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Pushing the limits!
PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED 
OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also 
more data!

• Better architecture -> ResNet is typically standard, but 
InceptionNet architectures perform often better (e.g., 
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes 

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

Prof. Leal-Taixé and Prof. Niessner 73



Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this scenario is 

very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…
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“Most common” neural net mistakes

1) you didn't try to overfit a single batch first. 
2) you forgot to toggle train/eval mode for the net. 
3) you forgot to .zero_grad() (in pytorch) before 

.backward(). 
4) you passed softmaxed outputs to a loss that expects 

raw logits. 
5) you didn't use bias=False for your Linear/Conv2d 

layer when using BatchNorm, or conversely forget 
to include it for the output layer
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Next lecture

• Next Monday: advanced architectures

• Keep projects in mind!
– Start actively discussing -> reach out to us if you have 

questions!
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