Basics of DL
What we assume you know

• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture

• PyTorch (can use TensorFlow...)

• You have trained already several models and know how to debug problems, observe training curves, prepare training/validation/test data.
What is a Neural Network?
Neural Network

- Linear score function $f = Wx$

On CIFAR-10

On ImageNet
Neural Network

- Linear score function $f = Wx$

- Neural network is a nesting of ‘functions’
 - 2-layers: $f = W_2 \max(0, W_1 x)$
 - 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
 - 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
 - 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
 - ... up to hundreds of layers
Neural Network

1-layer network: \(f = Wx \)

2-layer network: \(f = W_2 \max(0, W_1x) \)

\[
\begin{align*}
x & \quad W & \quad f \\
128 \times 128 & = 16384 & 10
\end{align*}
\]

\[
\begin{align*}
x & \quad W_1 & \quad h & \quad W_2 & \quad f \\
128 \times 128 & = 16384 & 1000 & 10
\end{align*}
\]
Neural Network

input layer

hidden layer

output layer

Credit: Li/Karpathy/Johnson
Loss functions
Neural networks

What is

Loss
(Softmax, Hinge)

Prediction
Loss functions

- Softmax loss function

\[L_i = -\log \left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}} \right) \]

- Hinge Loss (derived from the Multiclass SVM loss)

\[L_i = \sum_{k \neq y_i} \max(0, s_k - s_{y_i} + 1) \]

Evaluate the ground truth score for the image
Loss functions

• Softmax loss function
 – Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)
 – Saturates whenever it has learned a class “well enough"
Activation functions
Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Forward

\[x = 6 \]

\(\nabla L \) saturated neurons kill the gradient flow

\[\frac{\partial L}{\partial x} = \frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma} \]
Problem of positive output

More on zero-mean data later
Prof. Leal-Taixé and Prof. Niessner

LeCun 1991
Rectified Linear Units (ReLU)

- Does not saturate
- Fast convergence
- Large and consistent gradients

What happens if a ReLU outputs zero?

Dead ReLU
Maxout units

- Generalization of ReLUs
- Linear regimes
- Does not die
- Does not saturate

Increase of the number of parameters
Optimization
Gradient Descent for Neural Networks

\[h_j = A(b_{0,j} + \sum_k x_k w_{0,j,k}) \]

\[y_i = A(b_{1,i} + \sum_j h_j w_{1,i,j}) \]

\[L_i = (y_i - t_i)^2 \]

Just simple: \(A(x) = \max(0, x) \)

\[\nabla_{w,b} f_{\{x,t\}}(w) = \begin{bmatrix}
\frac{\partial f}{\partial w_{0,0,0}} \\
\vdots \\
\frac{\partial f}{\partial w_{l,m,n}} \\
\vdots \\
\frac{\partial f}{\partial b_{l,m}}
\end{bmatrix} \]
Stochastic Gradient Descent (SGD)

\[\theta^{k+1} = \theta^k - \alpha \nabla_{\theta} L(\theta^k, x_{\{1..m\}}, y_{\{1..m\}}) \]

\[\nabla_{\theta} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L_i \]

Note the terminology: iteration vs epoch
Gradient Descent with Momentum

\[v^{k+1} = \beta \cdot v^k + \nabla_{\theta} L(\theta^k) \]

\[\theta^{k+1} = \theta^k - \alpha \cdot v^{k+1} \]

Exponentially-weighted average of gradient

Important: velocity \(v^k \) is vector-valued!
Gradient Descent with Momentum

Step will be largest when a sequence of gradients all point to the same direction

Hyperparameters are α, β
β is often set to 0.9

$$\theta^{k+1} = \theta^k - \alpha \cdot \nu^{k+1}$$
RMSProp

\[s^{k+1} = \beta \cdot s^k + (1 - \beta) [\nabla_{\theta} L \circ \nabla_{\theta} L] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla_{\theta} L}{\sqrt{s^{k+1}} + \epsilon} \]

Hyperparameters: \(\alpha, \beta, \epsilon \)

Element-wise multiplication

Needs tuning! Often 0.9 Typically \(10^{-8} \)

Prof. Leal-Taixé and Prof. Niessner
RMSProp

(uncentered) variance of gradients
-> second momentum

\[s^{k+1} = \beta \cdot s^k + (1 - \beta) [\nabla_\theta L \circ \nabla_\theta L] \]

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{\nabla_\theta L}{\sqrt{s^{k+1}} + \epsilon} \]

We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

Can increase learning rate!

Fig. credit: A. Ng
Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

\[m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1)\nabla_\theta L(\theta^k) \]

First momentum: mean of gradients

\[v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2)\left[\nabla_\theta L(\theta^k) \cdot \nabla_\theta L(\theta^k)\right] \]

Second momentum: variance of gradients

\[\theta^{k+1} = \theta^k - \alpha \cdot \frac{m^{k+1}}{\sqrt{v^{k+1} + \epsilon}} \]
Adam

Combines Momentum and RMSProp

\[
m^{k+1} = \beta_1 \cdot m^k + (1 - \beta_1) \nabla_\theta L(\theta^k)
\]

\[
v^{k+1} = \beta_2 \cdot v^k + (1 - \beta_2)[\nabla_\theta L(\theta^k) \odot \nabla_\theta L(\theta^k)]
\]

\[
\theta^{k+1} = \theta^k - \alpha \cdot \frac{\hat{m}^{k+1}}{\sqrt{\hat{v}^{k+1} + \epsilon}}
\]

\[
m^{k+1} \text{ and } v^{k+1} \text{ are initialized with zero}
\]
-> bias towards zero

Typically, bias-corrected moment updates

\[
\hat{m}^{k+1} = \frac{m^k}{1 - \beta_1}
\]

\[
\hat{v}^{k+1} = \frac{v^k}{1 - \beta_2}
\]
Training NNs
Importance of Learning Rate
Over- and Underfitting

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson. O'Reilly Media Inc., 2017
Over- and Underfitting

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html
Basic recipe for machine learning

- Split your data

60% train
20% validation
20% test

Find your hyperparameters
Basic recipe for machine learning

- **Training error high?**
 - Yes: Bigger model, train longer, new model architecture
 - No: Dev error high?
 - Yes: More data, regularization, new model architecture
 - No: Done!
Regularization
Regularization

• Any strategy that aims to

Lower validation error

Increasing training error
Data augmentation

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

c. Crop+Flip augmentation (= 10 images)
Early stopping

Training time is also a hyperparameter.

Overfitting
Bagging and ensemble methods

- Bagging: uses k different datasets

Training Set 1
Training Set 2
Training Set 3
Dropout

• Disable a random set of neurons (typically 50%)
How to deal with images?
Using CNNs in Computer Vision

Classification

Classification + Localization

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Prof. Leal-Taixé and Prof. Niessner

Credit: Li/Karpathy/Johnson
Image filters

- Each kernel gives us a different image filter

Input

- **Edge detection**

 \[
 \begin{bmatrix}
 -1 & -1 & -1 \\
 -1 & 8 & -1 \\
 -1 & -1 & -1
 \end{bmatrix}
 \]

- **Box mean**

 \[
 \frac{1}{9} \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{bmatrix}
 \]

- **Sharpen**

 \[
 \begin{bmatrix}
 0 & -1 & 0 \\
 -1 & 5 & -1 \\
 0 & -1 & 0
 \end{bmatrix}
 \]

- **Gaussian blur**

 \[
 \frac{1}{16} \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 4 & 2 \\
 1 & 2 & 1
 \end{bmatrix}
 \]

Let's learn these filters!
Convolutions on RGB Images

- **32×32×3** image (pixels x)
- **5×5×3** filter (weights w)
- **Activation map** (also feature map)

Convolve slide over all spatial locations x_i and compute all output z_i; w/o padding, there are **28×28** locations.
Let's apply **five** filters, each with different weights!
CNN Prototype

ConvNet is concatenation of Conv Layers and activations

Input Image

- 3 filters: 3 × 3 × 3
- 5 filters: 5 × 5 × 3
- 8 filters: 5 × 5 × 5
- 12 filters: 5 × 5 × 8

Layers:
- Conv + ReLU
- Conv + ReLU
- Conv + ReLU

Output:
- 20
CNN learned filters

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
Pooling Layer: Max Pooling

Single depth slice of input

Max pool with 2×2 filters and stride 2

‘Pooled’ output
Classic CNN architectures
LeNet

- Digit recognition: 10 classes

- Conv -> Pool -> Conv -> Pool -> Conv -> FC

- As we go deeper: Width, height \(\downarrow\) Number of filters

60k parameters
AlexNet

- Softmax for 1000 classes

[Krizhevsky et al. 2012]
VGGNet

- Striving for simplicity
- CONV = 3x3 filters with stride 1, same convolutions
- MAXPOOL = 2x2 filters with stride 2

[Simonyan and Zisserman 2014]
Still very common: VGG-16
ResNet

[He et al. 2015]
ResNet

- Xavier/2 initialization
- SGD + Momentum (0.9)
- Learning rate 0.1, divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout

[He et al. 2015]
ResNet

- If we make the network deeper, at some point performance starts to degrade

- Too many parameters, the optimizer cannot properly train the network
ResNet

- If we make the network deeper, at some point performance starts to degrade
Inception layer

(a) Inception module, naïve version

(b) Inception module with dimensionality reduction
GoogLeNet: using the inception layer

[Szegedy et al. 2014]

Inception block
CNN Architectures

ImageNet Classification Error

- 2011 (XRCE): 26.0
- 2012 (AlexNet): 16.4
- 2013 (ZF): 11.7
- 2014 (VGG): 7.3
- 2014 (GoogLeNet): 6.7
- 2015 (ResNet): 3.6
- 2016 (GoogLeNet-v4): 3.1
Recurrent Neural Networks
Basic structure of a RNN

- Multi-layer RNN

The hidden state will have its own internal dynamics

More expressive model!
Basic structure of a RNN

- We want to have notion of “time” or “sequence”

Output

\[A_t = \theta_c A_{t-1} + \theta_x x_t \]

\[h_t = \theta_h A_t \]

Same parameters for each time step = generalization!
Long-Short Term Memory Units

- LSTM
ADL4CV Content
Rough Outline

- Lecture 1: introduction
- Lecture 2: advanced architectures (e.g. siamese, capsules, attention)
- Lecture 3: advanced architectures con’t
- Lecture 4: Visualization, t-sne, grad-cam (active heatmaps), deep dream, excitation backprop
- Lecture 5: Bayesian Deep Learning
- Lecture 6: Autoencoders, VAE
- Lecture 7: GANs 1: Generative models, GANs.
- Lecture 8: GANs 2: Generative models, GANs
- Lecture 9: CNN++ / Audio<->Visual - autoregressive, pixeLCNN
- Lecture 10: RNN -> NLP <-> Visual Q&A (focus on the cross domain: CNN for image, RNN for text) /
- Lecture 12: Domain Adaptation / Transfer Learning
How to train your neural network?
Is data loading correct?

• Data output (target): overfit to single training sample (needs to have 100% because it just memorizes input)
 – It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training samples
 – It’s now conditioned on input data

• Save and re-load data from PyTorch / TensorFlow
Network debugging

• Move from overfitting to a hand-full of samples
 – 5, 10, 100, 1000…
 – At some point, we should see generalization

• Apply common sense: can we overfit to the current number of samples?

• Always be aware of network parameter count!
Check timings

• How long does each iteration take?
 – Get precise timings!!
 – If an iteration takes > 500ms, things get dicey...

• Where is the bottleneck: data loading vs backprop?
 – Speed up data loading: smaller resolutions, compression, train from SSD – e.g., network training is good idea
 – Speed up backprop:

• Estimate total timings: how long until you see some pattern? How long till convergence?
Network Architecture

• 100% mistake so far: “let's use super big network and train for two weeks and we see where we stand.” [because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!
Debugging

• Need train/val/test curves
 – Evaluation needs to be consistent!
 – Numbers need to be comparable

• Only make one change at a time
 – "I've added 5 more layers and double the training size, and now I also trained 5 days longer" – it's better, but WHY?
Overfitting

ONLY THINK ABOUT THIS ONCE YOU’R TRAINING LOSS GOES DOWN AND YOU CAN OVERFIT!

Typically try this order:

• Network too big – makes things also faster 😊
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better
Pushing the limits!

PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED OVERFITTING ISSUES!

- Bigger network -> more capacity, more power - needs also more data!
- Better architecture -> ResNet is typically standard, but InceptionNet architectures perform often better (e.g., InceptionNet v4, XceptionNet, etc.)
- Schedules for learning rate decay
- Class-based re-weighting (e.g., give under-represented classes higher weight)
- Hyperparameter tuning: e.g., grid search; apply common sense!
Bad signs…

• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this scenario is very unlikely – unless you have a bug 😊)
• Test on train set is different error than train… (forgot dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…
“Most common” neural net mistakes

1) you didn't try to overfit a single batch first.
2) you forgot to toggle train/eval mode for the net.
3) you forgot to .zero_grad() (in pytorch) before .backward().
4) you passed softmaxed outputs to a loss that expects raw logits.
5) you didn't use bias=False for your Linear/Conv2d layer when using BatchNorm, or conversely forget to include it for the output layer.
Next lecture

• Next Monday: advanced architectures

• Keep projects in mind!
 – Start actively discussing -> reach out to us if you have questions!