
Basics of DL

Prof. Leal-Taixé and Prof. Niessner 1

What we assume you know
• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture

• PyTorch (can use TensorFlow…)

• You have trained already several models and know
how to debug problems, observe training curves,
prepare training/validation/test data.

Prof. Leal-Taixé and Prof. Niessner 2

What is a Neural
Network?

Prof. Leal-Taixé and Prof. Niessner 3

Neural Network
• Linear score function 𝑓 = 𝑊𝑥

Prof. Leal-Taixé and Prof. Niessner 4

On CIFAR-10

On ImageNet
Credit: Li/Karpathy/Johnson

Neural Network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers

Prof. Leal-Taixé and Prof. Niessner 5

Neural Network

Prof. Leal-Taixé and Prof. Niessner 6

2-layer network: 𝑓 = 𝑊2max(0,𝑊1𝑥)

𝑥
ℎ𝑊1

128 × 128 = 16384 1000

𝑓𝑊2

10

1-layer network: 𝑓 = 𝑊𝑥

𝑥
𝑊

128 × 128 = 16384

𝑓

10

Neural Network

Prof. Leal-Taixé and Prof. Niessner 7

Credit: Li/Karpathy/Johnson

Loss functions

Prof. Leal-Taixé and Prof. Niessner 8

Neural networks
What is the shape of this function?

9Prof. Leal-Taixé and Prof. Niessner

Loss
(Softmax,

Hinge)

Prediction

Loss functions
• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)

10Prof. Leal-Taixé and Prof. Niessner

Evaluate the ground
truth score for the
image

Loss functions
• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well enough”

11Prof. Leal-Taixé and Prof. Niessner

Activation functions

Prof. Leal-Taixé and Prof. Niessner 12

Sigmoid
Forward

13Prof. Leal-Taixé and Prof. Niessner

Saturated
neurons kill the
gradient flow

Problem of positive output

14Prof. Leal-Taixé and Prof. Niessner

More on zero-
mean data later

tanh

15Prof. Leal-Taixé and Prof. Niessner

Zero-
centered

Still saturates

Still saturates

LeCun 1991

Rectified Linear Units (ReLU)

16Prof. Leal-Taixé and Prof. Niessner

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

Maxout units

17Prof. Leal-Taixé and Prof. Niessner

Generalization
of ReLUs

Linear
regimes

Does not
die

Does not
saturate

Increase of the number of parameters

Optimization

Prof. Leal-Taixé and Prof. Niessner 18

Gradient Descent for Neural Networks

Prof. Leal-Taixé and Prof. Niessner 19

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤,𝑏𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)

Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

Prof. Leal-Taixé and Prof. Niessner 20

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch

Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient

Important: velocity 𝑣𝑘 is vector-valued!

Prof. Leal-Taixé and Prof. Niessner 21

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Prof. Leal-Taixé and Prof. Niessner 22

Step will be largest when a sequence of
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

Prof. Leal-Taixé and Prof. Niessner 23

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!

RMSProp

Prof. Leal-Taixé and Prof. Niessner 24

X-direction
Small gradients

Y-
D

ir
ec

ti
o

n
La

rg
e

gr
ad

ie
n

ts

Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients
-> second momentum

Can increase learning rate!

Adaptive Moment Estimation (Adam)

Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 25

First momentum:
mean of gradients

Second momentum:
variance of gradients

Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖

Prof. Leal-Taixé and Prof. Niessner 26

𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2

Convergence

27

Training NNs

Prof. Leal-Taixé and Prof. Niessner 28

Importance of Learning Rate

Prof. Leal-Taixé and Prof. Niessner 29

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 30

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Over- and Underfitting

Prof. Leal-Taixé and Prof. Niessner 31

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Basic recipe for machine learning
• Split your data

Prof. Leal-Taixé and Prof. Niessner 32

Find your hyperparameters

20%

train testvalidation

20%60%

Basic recipe for machine learning

Prof. Leal-Taixé and Prof. Niessner 33

Regularization

Prof. Leal-Taixé and Prof. Niessner 34

Regularization
• Any strategy that aims to

35Prof. Leal-Taixé and Prof. Niessner

Lower
validation error

Increasing
training error

Data augmentation

36Prof. Leal-Taixé and Prof. Niessner Krizhevsky 2012

Early stopping
Training time is also a hyperparameter

37Prof. Leal-Taixé and Prof. Niessner

Overfitting

Bagging and ensemble methods
• Bagging: uses k different datasets

38Prof. Leal-Taixé and Prof. Niessner

Training Set 1 Training Set 2 Training Set 3

Dropout
• Disable a random set of neurons (typically 50%)

39Prof. Leal-Taixé and Prof. Niessner Srivastava 2014

F
o

rw
ard

How to deal with
images?

Prof. Leal-Taixé and Prof. Niessner 40

Using CNNs in Computer Vision

Prof. Leal-Taixé and Prof. Niessner 41Credit: Li/Karpathy/Johnson

Image filters
• Each kernel gives us a different image filter

Prof. Leal-Taixé and Prof. Niessner 42

Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean
1

9

1 1 1
1 1 1
1 1 1

Gaussian blur
1

16

1 2 1
2 4 2
1 2 1

Convolutions on RGB Images

Prof. Leal-Taixé and Prof. Niessner 43

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

Convolve

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are
28 × 28 locations

Convolution Layer

Prof. Leal-Taixé and Prof. Niessner 44

32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Convolve

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Prof. Leal-Taixé and Prof. Niessner 45

CNN Prototype
ConvNet is concatenation of Conv Layers and activations

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20

CNN learned filters

Prof. Leal-Taixé and Prof. Niessner 46

Prof. Leal-Taixé and Prof. Niessner 47

Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output

Classic CNN
architectures

Prof. Leal-Taixé and Prof. Niessner 48

LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, height Number of filters

Prof. Leal-Taixé and Prof. Niessner 49

60k parameters

AlexNet

• Softmax for 1000 classes

Prof. Leal-Taixé and Prof. Niessner 50

[Krizhevsky et al. 2012]

VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

Prof. Leal-Taixé and Prof. Niessner 51

[Simonyan and Zisserman 2014]

VGGNet

Prof. Leal-Taixé and Prof. Niessner 52

Conv=3x3,s=1,same
Maxpool=2x2,s=2

Still very common: VGG-16

ResNet

Prof. Leal-Taixé and Prof. Niessner 53

[He et al. 2015]

ResNet

- Xavier/2 init by He et al.
• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

Prof. Leal-Taixé and Prof. Niessner 54

[He et al. 2015]

ResNet
• If we make the network deeper, at some point

performance starts to degrade

• Too many parameters,
the optimizer cannot
properly train the network

Prof. Leal-Taixé and Prof. Niessner 55

ResNet
• If we make the network deeper, at some point

performance starts to degrade

Prof. Leal-Taixé and Prof. Niessner 56

Inception layer

Prof. Leal-Taixé and Prof. Niessner 57

GoogLeNet: using the inception layer

Prof. Leal-Taixé and Prof. Niessner 58

[Szegedy et al. 2014]

Inception block

CNN Architectures

Prof. Leal-Taixé and Prof. Niessner 59

Recurrent Neural
Networks

Prof. Leal-Taixé and Prof. Niessner 60

Basic structure of a RNN
• Multi-layer RNN

Prof. Leal-Taixé and Prof. Niessner 61

Outputs

Inputs

Hidden
states

The hidden state
will have its own
internal dynamics

More expressive
model!

Basic structure of a RNN
• We want to have notion of “time” or “sequence”

Prof. Leal-Taixé and Prof. Niessner 62

Hidden
state

Same parameters for
each time step =
generalization!

Output

Long-Short Term Memory Units
• LSTM

Prof. Leal-Taixé and Prof. Niessner 63

ADL4CV Content

Prof. Leal-Taixé and Prof. Niessner 64

Rough Outline
• Lecture 1: introduction
• Lecture 2: advanced architectures (e.g. siamese, capsules, attention)
• Lecture 3: advanced architectures con’t
• Lecture 4: Visualization, t-sne, grad-cam (active heatmaps), deep dream,

excitation backprop
• Lecture 5: Bayesian Deep Learning
• Lecture 6: Autoencoders, VAE

Lecture 7: GANs 1: Generative models, GANs.
• Lecture 8: GANs 2: Generative models, GANs
• Lecture 9: CNN++ / Audio<->Visual - autoregressive, pixelcnn
• Lecture 10: RNN -> NLP <-> Visual Q&A (focus on the cross domain: CNN

for image, RNN for text) /
• Lecture 11: Multi-dimensional CNN, 3D DL, video DL: pooling vs fully-conv,

operations… Self-supervised / unsupervised learning
• Lecture 12: Domain Adaptation / Transfer Learning
Prof. Leal-Taixé and Prof. Niessner 65

How to train your
neural network?

Prof. Leal-Taixé and Prof. Niessner 66

Is data loading correct?
• Data output (target): overfit to single training sample

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training
samples
– It’s now conditioned on input data

• Save and re-load data from PyTorch / TensorFlow

Prof. Leal-Taixé and Prof. Niessner 67

Network debugging
• Move from overfitting to a hand-full of samples

– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current
number of samples?

• Always be aware of network parameter count!

Prof. Leal-Taixé and Prof. Niessner 68

Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression, train

from SSD – e.g., network training is good idea
– Speed up backprop:

• Estimate total timings: how long until you see some
pattern? How long till convergence?

Prof. Leal-Taixé and Prof. Niessner 69

Network Architecture
• 100% mistake so far: “let’s use super big network and

train for two weeks and we see where we stand.”
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!

Prof. Leal-Taixé and Prof. Niessner 70

Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training size, and

now I also trained 5 days longer” – it’s better, but WHY?

Prof. Leal-Taixé and Prof. Niessner 71

Overfitting
ONLY THINKG ABOUT THIS ONCE YOU’R TRAINING LOSS
GOES DOWN AND YOU CAN OVERFIT!

Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better

Prof. Leal-Taixé and Prof. Niessner 72

Pushing the limits!
PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED
OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also
more data!

• Better architecture -> ResNet is typically standard, but
InceptionNet architectures perform often better (e.g.,
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

Prof. Leal-Taixé and Prof. Niessner 73

Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this scenario is

very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…

Prof. Leal-Taixé and Prof. Niessner 74

“Most common” neural net mistakes

1) you didn't try to overfit a single batch first.
2) you forgot to toggle train/eval mode for the net.
3) you forgot to .zero_grad() (in pytorch) before

.backward().
4) you passed softmaxed outputs to a loss that expects

raw logits.
5) you didn't use bias=False for your Linear/Conv2d

layer when using BatchNorm, or conversely forget
to include it for the output layer

Prof. Leal-Taixé and Prof. Niessner 75Credit: A. Karpathy

Next lecture

• Next Monday: advanced architectures

• Keep projects in mind!
– Start actively discussing -> reach out to us if you have

questions!

Prof. Leal-Taixé and Prof. Niessner 76

