Siamese Neural Networks and Similarity Learning
What can ML do for us?

- Classification problem
What can ML do for us?

- Classification problem on ImageNet with thousands of categories
What can ML do for us?

- Performance on ImageNet
 - Size of the blobs indicates the number of parameters

What can ML do for us?

- Regression problem: pose regression

\[y \in \mathbb{R}^{2048} \]

Pretrained network

Feature extraction

Linear regression

\[p \in \mathbb{R}^{3} \]

\[q \in \mathbb{R}^{4} \]

Prof. Leal-Taixé and Prof. Niessner
What can ML do for us?

- Regression problem: bounding box regression

D. Held et al. „Learning to Track at 100 FPS with Deep Regression Networks“. ECCV 2016
What can ML do for us?

- Third type of problems

A Classification: person, face, female

B Classification: person, face, male
What can ML do for us?

- Third type of problems

Is it the same person?

Prof. Leal-Taixé and Prof. Niessner
What can ML do for us?

- Third type of problems: Similarity Learning
 - Comparison
 - Ranking

Prof. Leal-Taixé and Prof. Niessner
Similarity Learning: when and why?

- Application: unlocking your iPhone with your face

Training
Similarity Learning: when and why?

• Application: unlocking your iPhone with your face

A
YES

B
NO

Testing

Can be solved as a classification problem
Similarity Learning: when and why?

- Application: face recognition system so students can enter the exam room without the need for ID check.
Similarity Learning: when and why?

• Application: face recognition system so students can enter the exam room without the need for ID check

What is the problem with this approach?

Scalability – we need to retrain our model every time a new student is registered to the course
Similarity Learning: when and why?

- Application: face recognition system so students can enter the exam room without the need for ID check

Can we train one model and use it every year?
Similarity Learning: when and why?

• Learn a similarity function

A

Low similarity score

B

A

High similarity score

B
Similarity Learning: when and why?

• Learn a similarity function: testing

\[d(A, B) > \tau \]

Not the same person
Similarity Learning: when and why?

- Learn a similarity function

\[d(A, B) < \tau \]

Same person
Similarity learning

• How do we train a network to learn similarity?
Siamese Neural Networks
Similarity learning

- How do we train a network to learn similarity?

A → CNN → FC → Representation of my face in 128 values

Prof. Leal-Taixé and Prof. Niessner

Taigman et al. „DeepFace: closing the gap to human level performance“. CVPR 2014
Similarity learning

• How do we train a network to learn similarity?

A → \(f(A) \)

B → \(f(B) \)

Taigman et al. „DeepFace: closing the gap to human level performance“. CVPR 2014
Similarity learning

- Siamese network = shared weights

A

B

$f(A)$

$f(B)$

Taigman et al. „DeepFace: closing the gap to human level performance“. CVPR 2014
Similarity learning

- Siamese network = shared weights

- We use the same network to obtain an encoding of the image $f(A)$

- To be done: compare the encodings
Similarity learning

- Distance function \(d(A, B) = \| f(A) - f(B) \|^2 \)

- Training: learn the parameter such that
 - If \(A \) and \(B \) depict the same person, \(d(A, B) \) is small
 - If \(A \) and \(B \) depict a different person, \(d(A, B) \) is large
Similarity learning

• Loss function for a positive pair:

 – If A and B depict the same person, $d(A, B)$ is small

 $\mathcal{L}(A, B) = ||f(A) - f(B)||^2$
Similarity learning

• Loss function for a negative pair:

 – If \(A \) and \(B \) depict a different person, \(d(A, B) \) is large

 – Better use a Hinge loss:

\[
\mathcal{L}(A, B) = \max(0, m^2 - \| f(A) - f(B) \|^2)
\]

If two elements are already far away, do not spend energy in pulling them even further away
Similarity learning

- Contrastive loss:

$$\mathcal{L}(A, B) = y^* \| f(A) - f(B) \|^2 + (1 - y^*) \max(0, m^2 - \| f(A) - f(B) \|^2)$$

Positive pair, reduce the distance between the elements

Negative pair, brings the elements further apart up to a margin
Similarity learning

• Training the siamese networks
 – You can update the weights for each channel independently and then average them

• This loss function allows us to learn to bring positive pairs together and negative pairs apart
Triplet Loss
Triplet loss

- Triplet loss allows us to learn a ranking

We want: $\|f(A) - f(P)\|^2 < \|f(A) - f(N)\|^2$

Triplet loss

- Triplet loss allows us to learn a ranking

\[
\|f(A) - f(P)\|^2 < \|f(A) - f(N)\|^2 \\
\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 < 0 \\
\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + m < 0
\]

margin

Schroff et al. „FaceNet: a unified embedding for face recognition and clustering“. CVPR 2015
Triplet loss

- Triplet loss allows us to learn a ranking

$$\|f(A) - f(P)\|^2 < \|f(A) - f(N)\|^2$$

$$\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 < 0$$

$$\|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + m < 0$$

$$\mathcal{L}(A, P, N) = \max(0, \|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + m)$$

Schroff et al. „FaceNet: a unified embedding for face recognition and clustering“. CVPR 2015
Triplet loss

- Hard negative mining: training with hard cases

$$\mathcal{L}(A, P, N) = \max(0, \|f(A) - f(P)\|^2 - \|f(A) - f(N)\|^2 + m)$$

- Train for a few epochs
- Choose the hard cases where $d(A, P) \approx d(A, N)$
- Train with those to refine the distance learned
Triplet loss

Anchor

Negative

Positive

Training

Anchor

Negative

Positive

Prof. Leal-Taixé and Prof. Niessner
Triplet loss: test time

- Just do nearest neighbor search!
Triplet Loss Challenges

• Random sampling does not work - the number of possible triplets is $O(n^3)$ so the network would need to be trained for a very long time.

• Even with hard negative mining, there is the risk of being stuck in local minima.
Several approaches to improve similarity learning
Improving similarity learning

- **Loss:**
 - Contrastive vs. triplet loss

- **Sampling:**
 - Choosing the best triplets to train with, sample the space wisely
 - diversity of classes + hard cases

- **Ensembles:**
 - Why not using several networks, each of them trained with a subset of triplets?

- Can we use a classification loss for similarity learning?
Losses: interesting works

- Wang et al., Deep metric learning with angular loss, (ICCV 2017)

- Yu et al., Correcting the triplet selection bias for triplet loss, (ECCV 2018)
Improving similarity learning

• Loss:
 – Contrastive vs. triplet loss

• Sampling:
 – Choosing the best triplets to train with, sample the space wisely
 - diversity of classes + hard cases

• Ensembles:
 – Why not using several networks, each of them trained with a
 subset of triplets?

• Can we use a classification loss for similarity learning?
Sampling: Hierarchical Triplet Loss

• Build a hierarchical tree where the leaves of the tree represent the image classes. Recursively merge them until you reach the root node.
HTL: building the tree

• In order to create the tree, we first define a distance between classes. Intuition: if the distance is small, they will be merged in the next level of the tree.

$$d(p, q) = \frac{1}{n_p n_q} \sum_{i \in p, j \in q} ||r_i - r_j||^2$$

The cardinality of classes p and q (how many samples do we have for each class)
HTL: Finding the anchors

- Randomly select l' nodes at the 0th level
 - This is done to preserve class diversity in the mini-batch

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
HTL: Finding the anchors

• Randomly select l' nodes at the 0^{th} level
 – This is done to preserve class diversity in the mini-batch

• $m-1$ nearest classes at the 0^{th} level are selected for each of the l' nodes based on the distance in feature space.
HTL: Finding the anchors

• Randomly select l' nodes at the 0^{th} level
 – This is done to preserve class diversity in the mini-batch

• $m-1$ nearest classes at the 0^{th} level are selected for each of the l' nodes based on the distance in feature space:
 – We want to encourage the model to learn discriminative features from the visual similar classes.
HTL: Finding the anchors

• Randomly select l' nodes at the 0^{th} level
 – This is done to preserve class diversity in the mini-batch

• $m-1$ nearest classes at the 0^{th} level are selected for each of the l' nodes based on the distance in feature space:
 – We want to encourage the model to learn discriminative features from the visual similar classes.

• t images per class are randomly collected

 \[t \cdot m \cdot l' \] images in the mini-batch
The margin actually depends on the distances computed on the hierarchical tree. The idea is that it can adapt to class distributions and differences of the samples within the classes.
Sampling: interesting works

- Manmatha et al., Sampling matters for deep metric learning, (ICCV 2017) - original sampling method
- Xu et al., Deep asymmetric metric learning via rich relationship mining, (CVPR 2019)
- Duan et al., Deep embedding learning with discriminative sampling policy, (CVPR 2019)
- Wang et al., Ranked list loss for deep metric learning (CVPR 2019)
- Wang et al., Multi-similarity loss with general pair weighting for deep metric learning (CVPR 2019) - best performance
Improving similarity learning

• **Loss:**
 – Contrastive vs. triplet loss

• **Sampling:**
 – Choosing the best triplets to train with, sample the space wisely
 - diversity of classes + hard cases

• **Ensembles:**
 – Why not using several networks, each of them trained with a subset of triplets?

• Can we use a classification loss for similarity learning?
Ensembles

- Idea: divide the space into K clusters, and have one learner per cluster.
Ensembles: Divide and Conquer

1) Cluster the embedding space in K clusters using K-means.

2) Build K independent learners (fully connected layer) at the top of the CNN, where each learner corresponds to one cluster - **DIVIDE**

3) Until convergence, sample each mini-batch from one random cluster, and update only its corresponding learner.

4) After the network has converged finetune using all learners at the same time - **CONQUER**

5) Go back to (1) and repeat several times.
Ensembles: interesting works

- Elezi et al., The Group Loss for Metric Learning, arXiv 2020 - train K independent networks and concatenate their features.
- Yuan et al., Hard-Aware Deeply Cascaded Embedding, CVPR 2017 - concatenate features from different levels of the network.
- Wang et al., Ranked list loss for deep metric learning, CVPR 2019 - concatenate features from different levels of the network.
- Kim et al., Attention-based Ensemble for Deep Metric Learning, ECCV 2018 - use an attention mechanism such that each learner looks at different parts of the object.
Improving similarity learning

• Loss:
 — Contrastive vs. triplet loss

• Sampling:
 — Choosing the best triplets to train with, sample the space wisely
 - diversity of classes + hard cases

• Ensembles:
 — Why not using several networks, each of them trained with a
 subset of triplets?

• Can we use a classification loss for similarity learning?
Classification loss: interesting works

- Movshovitz-Attias et al., No Fuss Distance Metric Learning using Proxies, ICCV 2017 - learn “proxy” samples to keep as positives and negatives in the mini-batch).
- Teh et al., ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis, arXiv 2020 - a better way of using proxies, some of the best results in the field.
- Elezi et al., The Group Loss for Deep Metric Learning, arXiv 2020 - refine the softmax probabilities via a dynamical system for better feature embedding.
Some results

<table>
<thead>
<tr>
<th>Loss</th>
<th>CUB-200-2011</th>
<th></th>
<th>CARS 196</th>
<th></th>
<th>Stanford Online Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@2</td>
<td>R@4</td>
<td>R@8</td>
<td>NMI</td>
</tr>
<tr>
<td>Triplet</td>
<td>42.5</td>
<td>55</td>
<td>66.4</td>
<td>77.2</td>
<td>55.3</td>
</tr>
<tr>
<td>Lifted Structure</td>
<td>43.5</td>
<td>56.5</td>
<td>68.5</td>
<td>79.6</td>
<td>56.5</td>
</tr>
<tr>
<td>Npairs</td>
<td>51.9</td>
<td>64.3</td>
<td>74.9</td>
<td>83.2</td>
<td>60.2</td>
</tr>
<tr>
<td>Facility Location</td>
<td>48.1</td>
<td>61.4</td>
<td>71.8</td>
<td>81.9</td>
<td>59.2</td>
</tr>
<tr>
<td>Angular Loss</td>
<td>54.7</td>
<td>66.3</td>
<td>76</td>
<td>83.9</td>
<td>61.1</td>
</tr>
<tr>
<td>Proxy-NCA</td>
<td>49.2</td>
<td>61.9</td>
<td>67.9</td>
<td>72.4</td>
<td>59.5</td>
</tr>
<tr>
<td>Deep Spectral</td>
<td>53.2</td>
<td>66.1</td>
<td>76.7</td>
<td>85.2</td>
<td>59.2</td>
</tr>
<tr>
<td>Classification</td>
<td>59.6</td>
<td>72</td>
<td>81.2</td>
<td>88.4</td>
<td>66.2</td>
</tr>
<tr>
<td>Bias Triplet</td>
<td>46.6</td>
<td>58.6</td>
<td>70.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Group Loss</td>
<td>64.3</td>
<td>75.8</td>
<td>84.1</td>
<td>90.5</td>
<td>67.9</td>
</tr>
<tr>
<td>SoftTriple</td>
<td>65.4</td>
<td>76.4</td>
<td>84.5</td>
<td>90.4</td>
<td>69.3</td>
</tr>
<tr>
<td>HORDE</td>
<td>66.8</td>
<td>77.4</td>
<td>85.1</td>
<td>91</td>
<td>-</td>
</tr>
</tbody>
</table>
Some results

<table>
<thead>
<tr>
<th>Loss+Sampling</th>
<th>CUB-200-2011</th>
<th>CARS 196</th>
<th>Stanford Online Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1 R@2 R@4 R@8 NMI</td>
<td>R@1 R@2 R@4 R@8 NMI</td>
<td>R@1 R@10 R@100 NMI</td>
</tr>
<tr>
<td>Samp. Matt.</td>
<td>63.6 74.4 83.1 90.0 69.0</td>
<td>79.6 86.5 91.9 95.1 69.1</td>
<td>72.7 86.2 93.8 90.7</td>
</tr>
<tr>
<td>Hier. triplet</td>
<td>57.1 68.8 78.7 86.5 -</td>
<td>81.4 88.0 92.7 95.7 -</td>
<td>74.8 88.3 94.8 -</td>
</tr>
<tr>
<td>DAMLRRM</td>
<td>55.1 66.5 76.8 85.3 61.7</td>
<td>73.5 82.6 89.1 93.5 64.2</td>
<td>69.7 85.2 93.2 88.2</td>
</tr>
<tr>
<td>DE-DSP</td>
<td>53.6 65.5 76.9 61.7 -</td>
<td>72.9 81.6 88.8 - 64.4</td>
<td>68.9 84.0 92.6 89.2</td>
</tr>
<tr>
<td>RLL 1</td>
<td>57.4 69.7 79.2 86.9 63.6</td>
<td>74 83.6 90.1 94.1 65.4</td>
<td>76.1 89.1 95.4 89.7</td>
</tr>
<tr>
<td>GPW</td>
<td>65.7 77.0 86.3 91.2 -</td>
<td>84.1 90.4 94.0 96.5 -</td>
<td>78.2 90.5 96.0 -</td>
</tr>
<tr>
<td>Teacher-Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKD</td>
<td>61.4 73.0 81.9 89.0 -</td>
<td>82.3 89.8 94.2 96.6 -</td>
<td>75.1 88.3 95.2 -</td>
</tr>
<tr>
<td>Loss+Ensembles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIER 6</td>
<td>55.3 67.2 76.9 85.1 -</td>
<td>75.0 83.9 90.3 94.3 -</td>
<td>72.7 86.5 94.0 -</td>
</tr>
<tr>
<td>HDC 3</td>
<td>54.6 66.8 77.6 85.9 -</td>
<td>78.0 85.8 91.1 95.1 -</td>
<td>70.1 84.9 93.2 -</td>
</tr>
<tr>
<td>ABE 2</td>
<td>55.7 67.9 78.3 85.5 -</td>
<td>76.8 84.9 90.2 94.0 -</td>
<td>75.4 88.0 94.7 -</td>
</tr>
<tr>
<td>ABE 8</td>
<td>60.6 71.5 79.8 87.4 -</td>
<td>85.2 90.5 94.0 96.1 -</td>
<td>76.3 88.4 94.8 -</td>
</tr>
<tr>
<td>A-BIER 6</td>
<td>57.5 68.7 78.3 86.2 -</td>
<td>82.0 89.0 93.2 96.1 -</td>
<td>74.2 86.9 94.0 -</td>
</tr>
<tr>
<td>D and C 8</td>
<td>65.9 76.6 84.4 90.6 69.6</td>
<td>84.6 90.7 94.1 96.5 70.3</td>
<td>75.9 88.4 94.9 90.2</td>
</tr>
<tr>
<td>RLL 3 [45]</td>
<td>61.3 72.7 82.7 89.4 66.1</td>
<td>82.1 89.3 93.7 96.7 71.8</td>
<td>79.8 91.3 96.3 90.4</td>
</tr>
<tr>
<td>Group Loss</td>
<td>66.9 77.1 85.4 91.5 70.0</td>
<td>88.0 92.5 95.7 97.5 74.2</td>
<td>76.3 88.3 94.6 91.1</td>
</tr>
<tr>
<td>HORDE</td>
<td>63.9 75.7 84.4 91.2 -</td>
<td>88.0 93.2 96.0 97.9 -</td>
<td>80.1 91.3 96.2 -</td>
</tr>
</tbody>
</table>
So, which model to use?

When trained correctly (and using the same backbone, same embedding space and no extra-tricks to boost the results) the difference in accuracy between different models is not that large...

<table>
<thead>
<tr>
<th>Model</th>
<th>P@1</th>
<th>RP</th>
<th>MAP@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrained</td>
<td>51.05</td>
<td>24.85</td>
<td>14.21</td>
</tr>
<tr>
<td>Contrastive</td>
<td>67.21 ± 0.49</td>
<td>36.92 ± 0.28</td>
<td>26.19 ± 0.28</td>
</tr>
<tr>
<td>Triplet</td>
<td>64.40 ± 0.38</td>
<td>34.63 ± 0.36</td>
<td>23.79 ± 0.36</td>
</tr>
<tr>
<td>ProxyNCA</td>
<td>66.14 ± 0.32</td>
<td>35.48 ± 0.18</td>
<td>24.56 ± 0.18</td>
</tr>
<tr>
<td>Margin</td>
<td>65.48 ± 0.50</td>
<td>35.04 ± 0.24</td>
<td>24.10 ± 0.26</td>
</tr>
<tr>
<td>N. Softmax</td>
<td>65.43 ± 0.23</td>
<td>35.98 ± 0.22</td>
<td>25.20 ± 0.21</td>
</tr>
<tr>
<td>CosFace</td>
<td>67.19 ± 0.37</td>
<td>37.36 ± 0.23</td>
<td>26.53 ± 0.23</td>
</tr>
<tr>
<td>ArcFace</td>
<td>67.06 ± 0.31</td>
<td>37.23 ± 0.17</td>
<td>26.35 ± 0.17</td>
</tr>
<tr>
<td>FastAP</td>
<td>63.64 ± 0.24</td>
<td>34.45 ± 0.21</td>
<td>23.71 ± 0.20</td>
</tr>
<tr>
<td>SNR</td>
<td>67.26 ± 0.46</td>
<td>36.86 ± 0.20</td>
<td>26.10 ± 0.22</td>
</tr>
<tr>
<td>MS</td>
<td>65.93 ± 0.16</td>
<td>35.91 ± 0.11</td>
<td>25.16 ± 0.10</td>
</tr>
<tr>
<td>MS+Miner</td>
<td>65.75 ± 0.34</td>
<td>35.95 ± 0.21</td>
<td>25.21 ± 0.22</td>
</tr>
<tr>
<td>SoftTriplet</td>
<td>66.20 ± 0.37</td>
<td>36.46 ± 0.20</td>
<td>25.64 ± 0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>P@1</th>
<th>RP</th>
<th>MAP@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrained</td>
<td>46.89</td>
<td>13.77</td>
<td>5.91</td>
</tr>
<tr>
<td>Contrastive</td>
<td>81.57 ± 0.36</td>
<td>35.72 ± 0.35</td>
<td>25.49 ± 0.41</td>
</tr>
<tr>
<td>Triplet</td>
<td>77.48 ± 0.57</td>
<td>32.85 ± 0.45</td>
<td>22.13 ± 0.45</td>
</tr>
<tr>
<td>ProxyNCA</td>
<td>83.25 ± 0.37</td>
<td>36.63 ± 0.34</td>
<td>26.39 ± 0.41</td>
</tr>
<tr>
<td>Margin</td>
<td>82.08 ± 2.41</td>
<td>34.71 ± 2.17</td>
<td>24.14 ± 2.25</td>
</tr>
<tr>
<td>N. Softmax</td>
<td>83.58 ± 0.29</td>
<td>36.56 ± 0.19</td>
<td>26.36 ± 0.21</td>
</tr>
<tr>
<td>CosFace</td>
<td>85.27 ± 0.23</td>
<td>36.72 ± 0.20</td>
<td>26.86 ± 0.22</td>
</tr>
<tr>
<td>ArcFace</td>
<td>83.95 ± 0.23</td>
<td>35.44 ± 0.26</td>
<td>25.24 ± 0.27</td>
</tr>
<tr>
<td>FastAP</td>
<td>78.20 ± 0.74</td>
<td>33.39 ± 0.67</td>
<td>22.90 ± 0.69</td>
</tr>
<tr>
<td>SNR</td>
<td>81.87 ± 0.35</td>
<td>35.40 ± 0.44</td>
<td>25.14 ± 0.49</td>
</tr>
<tr>
<td>MS</td>
<td>85.29 ± 0.31</td>
<td>37.96 ± 0.63</td>
<td>27.84 ± 0.77</td>
</tr>
<tr>
<td>MS+Miner</td>
<td>84.59 ± 0.29</td>
<td>37.70 ± 0.37</td>
<td>27.59 ± 0.43</td>
</tr>
<tr>
<td>SoftTriplet</td>
<td>83.66 ± 0.22</td>
<td>36.31 ± 0.16</td>
<td>26.06 ± 0.19</td>
</tr>
</tbody>
</table>

Prof. Leal-Taixé and Prof. Niessner

Musgrave et al., A Metric Learning Reality Check, arXiv 2020
Tips and tricks

• Simple baselines (contrastive loss, triplet loss and classification loss) actually perform well when trained correctly.

• Sampling is as important as the choice of loss function. Every method can be boosted by devising an intelligent sampling strategy.

• Some tricks may further improve the results (temperature for softmax, freezing batch-norm layers, using multiple centers per class, etc).
Tips and tricks

• Even naive ensembles may (significantly) boost performance.

• Good out-of-box choices: Proxy-NCA and SoftTriple Loss → they perform well, and do not require a massive hyperparameter search (and have code online!).

• Contrastive loss and triplet loss give a similarity score in addition to the feature embedding.

• Stronger backbone choices (densenet) further improve the results.
Applications in vision
Siamese network on MNIST
Establishing image correspondences

Image from University of Washington
Establishing image correspondences

Image from University of Washington
Establishing image correspondences

• Used in a wide range of Computer Vision applications
 – Image stitching or image alignment
 – Object recognition
 – 3D reconstruction
 – Object tracking
 – Image retrieval

• Many of these applications are now targeted directly with Neural Networks as we will see in the course
Establishing image correspondences

• Classic method pipeline
 – Extract manually designed feature descriptors
 • Harris, SIFT, SURF: most are based on image gradients
 • They suffer under extreme illumination or viewpoint changes
 • Slow to extract dense features
 – Match descriptors from the two images
 • Many descriptors are similar, one needs to filter out possible double matches and keep only reliable ones.
Establishing image correspondences

- End-to-end learning for patch similarity
- Fast to allow dense extraction
- Invariant to a wide array of transformations (illumination, viewpoint)

S. Zagoruyko and N. Komodakis. „Learning to Compare Image Patches via Convolutional Neural Networks“. CVPR 2015

Prof. Leal-Taixé and Prof. Niessner
Establishing image correspondences

- Classic Siamese architecture
 - Shared layers
 - Simulated feature extraction
 - One decision layer
 - Simulates the matching

S. Zagoruyko and N. Komodakis. „Learning to Compare Image Patches via Convolutional Neural Networks“. CVPR 2015
Image retrieval

Radenovic et al. ‘Fine-tuning CNN Image Retrieval with No Human Annotation’. TPAMI 2018
Unsupervised learning

- Learning from videos
 - Tracking provides the supervision
 - Use those as positive samples
 - Extract random patches as negative samples

Optical flow

• Input: 2 consecutive images (e.g. from a video)
• Output: displacement of every pixel from image A to image B

• Results in the “perceived” 2D motion, not the real motion of the object
Optical flow
Optical flow
Optical flow with CNNs

• End-to-end supervised learning of optical flow

Optical flow with CNNs

FlowNet: Learning Optical Flow with Convolutional Networks

We train convolutional networks to estimate optical flow.

FlowNet: architecture 1

- Stack both images \Rightarrow input is now $2 \times $ RGB = 6 channels
FlowNet: architecture 2

- Siamese architecture
FlowNet: architecture 2

- Two key design choices

How to combine the information from both images?
Correlation layer

- Multiplies a feature vector with another feature vector

Fixed operation. No learnable weights!
Correlation layer

- The matching score represents how correlated these two feature vectors are
Correlation layer

• Useful for finding image correspondences

Correlation layer

Siamese Neural Networks and Similarity Learning
Further references

• Savinov et al. „Quad-networks: unsupervised learning to rank for interest point detection“. CVPR 2017
• Ristani & Tomasi. „Features for Multi-Target Multi-Camera Tracking and Re-Identification“. CVPR 2018
• Chen et al. „Beyond triplet loss: a deep quadruplet network for person re-identification“. CVPR 2017