Visualization and Interpretability

Prof. Leal-Taixé and Prof. Niessner
Visualization of ConvNets

- Visualization of Features
- Visualization of Activations
- Visualization of Gradients
- T-SNE Visualization
- DeepDream
-

Visualization is a great way for debugging!
Visualizing and understanding CNNs
• Pick a unit in layer 1.
• Find the 9 image patches in your dataset that maximize the unit’s activation.

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing in the image space

Feature map 1, layer 1, 9 image patches that provided the highest activation

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014
Visualizing in the image space

Feature map 2, layer 1, 9 image patches that provided the highest activation

Visualizing in the image space

Layer 1

Layer 2

Visualizing in the image space

Zoom in, examples of Layer 2

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing in the image space

Zoom in, examples of Layer 5

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing in the image space

Zoom in, examples of Layer 5

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing importance
The occlusion experiment

- Block different parts of the image and see how the classification score changes

The occlusion experiment

- Block different parts of the image and see how the classification score changes

The face of the dog is more important for correct classification.
The occlusion experiment

- Create a map, where each pixel represents the classification probability if an occlusion square is placed in that region.

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
The occlusion experiment

Visualizing features
DeconvNet

- Map activations back to the image space

CONVNET Image Feature representation

DECONVNET Feature representation Image

Zeiler et al. CVPR 2010, ICCV 2011
Visualizing features

• Use a DeconvNet to visualize a certain layer
Visualizing features

• Choose an input image
• Forward pass through the network.
• Observation: filter 15 of the 3rd layer is highly activated by this image
• Goal: visualize filter 15 of the 3rd layer
• Zero out all other filters
• Pass the layer through the DeconvNet
Visualizing features

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

- Unpooling

Keep the locations where the max came from

Visualizing features

- ReLU: you are still interested in having positive features for visualization.

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

• Deconvolution operation

• In practice we convolve with the transpose of the learned filter

Why the transpose?

• You want to find out what inputs influenced your outputs and how much

• Blackboard!
Why the transpose?

7x7 input

CONV

5x5 input
Why the transpose?

7x7 input

5x5 input

3x3 output

3x3 receptive field = 1 output pixel is connected to 9 input pixels

CONV
Why the transpose?

7x7 input

5x5 input

7x7 output

CONV

DECONV
Why the transpose?

Each input pixel had a different contribution to the black output pixel.
Why the transpose?

7x7 input

5x5 input

7x7 output

Goal: keep the contribution when we reconstruct the input (the contribution = weights)
Why the transpose?

CONV 3x3 kernel

Goal: keep the contribution when we reconstruct the input (the contribution = weights)
Why the transpose?

I want to express DECONV still as a convolution operation. To obtain the red pixel, where do I place the filter?
Why the transpose?

I want to express DECONV still as a convolution operation. To obtain the blue pixel, where do I place the filter?
Why the transpose?

I want to express DECONV still as a convolution operation. To obtain the purple pixel, where do I place the filter?
I want to express DECONV still as a convolution operation. To obtain the dark blue pixel, where do I place the filter?
Why the transpose?

We obtain the transposed filter! We just convolve the 5x5 input with the transposed filter and obtain the “deconvolved” output.
Why the transpose?

We obtain the transposed filter! We just convolve the 5x5 input with the transposed filter and obtain the “deconvolved” output.
Visualizing features

Layer 1

Zeiler and Fergus. "Visualizing and understanding convolutional neural networks". ECCV 2014
Visualizing features

Other ways of inverting ReLU

Visualization helps

• Observations on AlexNet

• 1. First layer is a mix of low and high frequency information, no mid-frequencies are covered

• Solution: Change from 11x11 to 7x7

Prof. Leal-Taixé and Prof. Niessner
Visualization helps

11x11 7x7
Visualization helps

- Observations on AlexNet

- 2. Aliasing artifacts in the 2nd layer caused by the large stride

- Solution: stride 4 changed to stride 2
Visualization helps
Visualization helps

• The best part: classification score improved by 2%!

• Actively use visualization to debug your CNNs
Visualizing features

• 1. DeconvNet: using the DeconvNet architecture to visualize features at a certain layer

• 2. Gradient ascent: generate a synthetic image that maximally activates a filter

Simonyan et al. „Deep inside convolutional networks: visualizing image classification models and saliency maps“. ICLR Workshop 2014
Visualizing features 2

- Want to find an image that maximizes the score for a particular class

\[
\arg \max_I S_c(I) + \lambda \|I\|_2^2
\]

- The score is taken before the softmax layer. Direct output of the Fully Connected layer.

- L2 norm to avoid only a few very large pixels

Visualizing features 2

- 1. Get a trained CNN (mean of the training images was subtracted to all images)
- 2. Pass a zero image through the CNN

Score for c
Visualizing features 2

- 3. Maximize the score → use gradient ascent and backpropagation

- 4. Make a small update on the image

Score for c
Visualizing features 2

- 5. Repeat
- 6. Visualize by adding the training mean image
Visualizing features 2.1

• Improve visualization with a better regularization

\[\arg \max_I S_c(I) + \lambda \|I\|_2^2 \]

• Propose different regularizations: using a gaussian blur on the image, clipping pixels with small value to 0, clipping gradients with small value to zero

Yosinksi et al. „Understanding neural networks through deep visualization“. ICML Workshop 2014
You can also visualize the features DeepVis [Yosinski et al. 15]
http://yosinski.com/deepvis
DeepDream

• Until now: Synthesize an image to maximize a specific feature

• Now: Amplify the feature activations at some layer in the network
DeepDream

1. Feed an image to a network
2. Choose a layer and ask the network to enhance whatever was detected → If you see dogs, show me more dogs!
DeepDream

• 1. Forward pass of the image up to layer L
• 2. Set the gradient of the layer = activations
 – Large activations for the dog filter will create large gradients
 – The image will be changed to „show more dogs“
• 3. Backpropagate
• 4. Update the image
DeepDream

- Low layers: basic features
DeepDream

• Deep layers: we start to see whole objects
DeepDream

Prof. Leal-Taixé and Prof. Niessner

• Deep layers: we start to see whole objects
• Deep layers: we start to see whole objects
DeepDream: amplifying the features

Mordvintsev et al. 15

Prof. Leal-Taixé and Prof. Niessner 61
t-SNE
Intuition

• We want to visualize the last FC layer of AlexNet which dimension 4096

• We do a forward pass of all the images and get their 4096 representations
Intuition

• Nearest neighbor visualization

Image credit: Fei-Fei, Yeung, Johnson
Intuition

• How can I visualize these clusters in feature space?

• Map high-dimensional embedding to 2D map which preserves the pairwise distance of the points

• This mapping is done by t-SNE

Image credit: Fei-Fei, Yeung, Johnson
t-SNE Visualization: MNIST
t-SNE Visualization: ImageNet
t-SNE Visualization: ShapeNet
When is t-SNE worth using?

• You can use it to debug your network

• Good for visualizing the clusters created by a Siamese network
More visualizations

• Saliency visualization: Simonyan et al. „Deep inside convolutional networks: visualizing image classification models and saliency maps“. ICLR Workshop 2014

• Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell, Devi Parikh, Dhruv Batra
Visualization and Interpretability